6.5.6 Настоящее и будущее эмоциональных вычислений
В наши дни модели для распознавания эмоций применяются в самых разных корпоративных информационных системах. В системах речевой аналитики, установленных в крупных колл-центрах (или сетях продаж), они используются для анализа речи как операторов, так и клиентов. Анализ речи операторов необходим для выявления ситуаций, когда оператор проявил грубость по отношению к клиенту. Понятно, что грубость может выражаться не только в текстовой составляющей общения, но и в тоне голоса. Без моделей распознавания эмоций отделы контроля качества просто не смогли бы обнаруживать многие из таких ситуаций: поскольку организация сплошного прослушивания разговоров операторов требует наличия огромного штата контролёров, то в реальности обычно прослушивается лишь ничтожная доля звонков. Но это не единственный способ применения эмоциональных вычислений в корпоративных колл-центрах. Можно, например, вычислить, как эмоциональная окраска речи клиентов меняется в процессе общения с оператором. Многие клиенты звонят в колл-центры в расстроенных чувствах, с жалобами на те или иные огрехи корпоративных сервисов. Если клиент в ходе разговора с оператором получает адекватную консультацию и поддержку, то эмоциональная окраска речи клиента приобретает более позитивную валентность. На основе анализа множества разговоров на предмет динамики валентности эмоций клиентов можно определить, какие из операторов лучше справляются со своими задачами, а какие хуже. Можно также выявить различные проблемные темы разговоров (нередко здесь в дуэте с эмоциональными вычислениями применяются технологии тематического моделирования, позволяющие сгруппировать все разговоры по темам), найти наиболее удачные и неудачные с эмоциональной точки зрения примеры диалогов, чтобы затем использовать их в обучении операторов, и, наконец, можно отслеживать общее распределение эмоций по всему колл-центру, чтобы выявлять массовые проблемы. Эмоциональные вычисления могут использоваться и в полностью автоматизированных диалоговых системах, причём как во время общения (робот-оператор определённым образом реагирует на те или иные эмоциональные нотки в речи абонента), так и для мониторинга и обучения таких систем. Например, в некоторой ситуации в скрипте робота может быть предусмотрено несколько вариантов ответа на реплику абонента, и робот может накапливать статистику эмоциональной реакции людей на каждый из этих вариантов, чтобы затем использовать реплики, приводящие к более благоприятным реакциям. В пределе эта идея даёт нам концепцию эмпатического бота, стремящегося в ходе общения научиться выбирать такие слова, которые максимизируют положительную реакцию собеседника. Компонентом подобной системы может быть и эмоционально окрашенный синтез речи. Такого бота можно рассматривать уже как модель, которая не только распознаёт эмоции (проявляет «пассивный» эмоциональный интеллект), но и пытается активно влиять на эмоциональную сферу человека.
Распознавание эмоций по выражению лица — ещё одно важное направление в эмоциональном ИИ. Здесь традиционно применяются свёрточные нейронные сети, которые справляются с этой задачей не хуже, чем с другими задачами распознавания образов. Такие модели применяются в системах видеонаблюдения, в пунктах массового обслуживания, во время проведения собеседований (анализ эмоциональных проявлений может использоваться для прогноза дальнейших успехов сотрудника), для анализа реакции аудитории во время массовых мероприятий и тому подобное.
Во второй половине 2010-х гг. модели машинного обучения, предназначенные для эмоциональных вычислений, заняли прочное место в наборе технологий, применяемых в бизнесе. Скорее всего, в ближайшие годы мы увидим их распространение также в различных государственных сервисах, в сфере образования и медицины, а может быть, им найдутся какие-либо неожиданные применения, о которых мы сегодня и не догадываемся.