5.3.1 Гордон Мур и его закон: различия между версиями
Нет описания правки |
Нет описания правки |
||
Строка 58: | Строка 58: | ||
Итак, закон Мура — это эмпирическое наблюдение относительно одного из параметров интегральных схем. Во-первых, оно не имеет прямого отношения к производительности машин, во-вторых, не является законом в том смысле, в котором законом является первый закон термодинамики или закон сохранения энергии. Количество элементов интегральных схем не обязано и дальше увеличиваться теми же темпами. Своё отношение к физической стороне вопроса Мур высказал в 2003 г., опубликовав работу под названием «Ни одна экспонента не вечна: но „вечность“ можно отсрочить!» (No Exponential Is Forever: But We Can Delay “Forever”!), в которой среди прочего указал на то, что рост физических величин по экспоненте в течение длительного временно́го периода невозможен. В 2007 г. Мур выразился ещё более конкретно, указав на атомарную природу вещества и ограничение скорости передачи сигнала скоростью света как на фундаментальные физические лимиты, которые рано или поздно встанут на пути совершенствования вычислительной техники. | Итак, закон Мура — это эмпирическое наблюдение относительно одного из параметров интегральных схем. Во-первых, оно не имеет прямого отношения к производительности машин, во-вторых, не является законом в том смысле, в котором законом является первый закон термодинамики или закон сохранения энергии. Количество элементов интегральных схем не обязано и дальше увеличиваться теми же темпами. Своё отношение к физической стороне вопроса Мур высказал в 2003 г., опубликовав работу под названием «Ни одна экспонента не вечна: но „вечность“ можно отсрочить!» (No Exponential Is Forever: But We Can Delay “Forever”!), в которой среди прочего указал на то, что рост физических величин по экспоненте в течение длительного временно́го периода невозможен. В 2007 г. Мур выразился ещё более конкретно, указав на атомарную природу вещества и ограничение скорости передачи сигнала скоростью света как на фундаментальные физические лимиты, которые рано или поздно встанут на пути совершенствования вычислительной техники. | ||
<references /> | |||
<comments /> | <comments /> |
Текущая версия от 21:38, 8 мая 2025
Технический прогресс не стоит на месте, и человечество создаёт всё более новые и совершенные вычислительные машины. В популярной литературе нередко можно встретить утверждение, что вычислительная мощность машин возрастает в экспоненциальной прогрессии и что эта закономерность называется законом Мура. Дошло до того, что некоторые люди считают, что «закон Мура» — это просто другое название экспоненциального роста (например, в сетевой дискуссии один из пользователей Facebook недавно заявил, что коронавирус COVID-19 распространяется в соответствии с законом Мура). Оставим на этом моменте эпидемиологов наедине с их фейспалмом, а сами попробуем разобраться, что же такое закон Мура, чем он является и чем совершенно точно не является.
Мы знаем Гордона Мура (не путать с Эдвардом!) как американского бизнесмена, инженера, сооснователя и почётного председателя корпорации Intel. В 1965 г., когда Мур опубликовал работу[1], посвящённую своему знаменитому наблюдению, он был известен как директор по исследованиям и разработке компании Fairchild Semiconductor и один из членов так называемой «Вероломной восьмёрки» (The Traitorous Eight). История самого знаменитого «предательства» в истории вычислительной техники началась в 1956 г., когда лауреат Нобелевской премии по физике 1956 г. Уильям Шокли при поддержке калифорнийского предпринимателя Арнольда Бекмана основал производственную лабораторию, которая стала одним из истоков Кремниевой долины[2].
Для разработки и организации производства новых полупроводниковых приборов Шокли собрал команду, состоявшую из молодых специалистов — физиков и инженеров. По мнению современников, в личности Шокли сочетались неоспоримый талант учёного, а также тяга к постоянному соперничеству и глухота к интересам и мнениям других людей. Шокли гордился своим интеллектуальным превосходством над другими людьми, а также собственным телом. Позже, в 1960-е гг., — по всей видимости под влиянием этих мыслей, а также, вероятно, полученных в автокатастрофе повреждений головного мозга — он придёт к идеям евгеники и начнёт публичную кампанию против «вырождения» американской нации, что в итоге окончательно разрушит его репутацию и сделает его персоной нон грата в научном сообществе.
Особенности характера Шокли не единожды приводили к конфликтам с другими людьми — человеколюбие никогда не было его сильной стороной.
Противоречивый характер Шокли проявлялся с самого детства. Раннее развитие (в пять месяцев он научился произносить собственное имя, а в двенадцать уже умел считать до четырёх и узнавал буквы алфавита) сочеталось в нём с приступами неуправляемой агрессии, во время которых он кусал родителей и бился в конвульсиях. Родители Шокли были довольно необычными людьми. Отец — потомок пилигримов с «Мейфлауэра», сын шкипера-китобоя и выпускник MIT — сколотил небольшое состояние, работая горным инженером, и занялся биржевой торговлей. Мать — выпускница Стэнфорда и первая в США женщина, ставшая горным инспектором. Отец был старше матери на 22 года. После свадьбы супруги перебрались в Лондон, где в 1910 г. и появился на свет Уильям Шокли. Родители мальчика пытались решить проблему приступов агрессии у сына различными способами, включавшими в себя телесные наказания и различные психологические эксперименты, они меняли нянек и ограничивали его общение со сверстниками. Биржевая торговля Шокли-старшего не принесла ему желаемых доходов, и в 1913 г. семья из-за финансовых проблем была вынуждена вернуться в США и обосноваться в Калифорнии. Только в восемь лет родители Шокли отдали его в школу, а год спустя — в Военную академию Пало-Алто (Palo Alto Military Academy, PAMA). К удивлению родителей, мальчик смог достаточно быстро адаптироваться в учебном заведении, где не только отлично учился, но и вполне прилично себя вёл. В 1927 г., после окончания школы (несколько классов которой он пропустил из-за планов родителей вернуться в Лондон), он поступил в Калифорнийский университет в Лос-Анджелесе (University of California, Los Angeles, UCLA), а осенью следующего года перешёл в Калифорнийский технологический институт (California Institute of Technology, Caltech), в те годы фокусировавшийся исключительно на фундаментальных научных исследованиях под руководством нобелевского лауреата Роберта Милликена. Это были годы формирования фундамента квантовой механики, которая и стала основной специализацией Шокли. Его учебный план составил лично Лайнус Полинг — в будущем дважды нобелевский лауреат, а наибольшее влияние на Шокли, по его собственному признанию, оказали преподаватели теоретической физики Ричард Толмен и Уильям Хьюстон. Именно в университетские годы в полной мере проявилась доминирующая черта характера Шокли — его постоянное стремление к соперничеству[3], [4].
В годы Второй мировой Шокли участвовал в разработке тактики стратегических бомбардировок и в других военных исследованиях. Придя к выводу, что эффективность бомбовых налётов на Японию была крайне низкой, Шокли порекомендовал «изучить альтернативы». Доподлинно неизвестно, имел ли Шокли в виду атомную бомбардировку, однако он, несомненно, был в курсе прогресса в этой области. Ещё летом 1940 г., будучи сотрудником Bell Labs, Шокли совместно с Джеймсом Фиском представил руководству доклад, в котором указал, что уран может служить источником изотопов для «грязных» бомб, а также на принципиальную возможность создания атомной бомбы. По мнению командующего ВВС США генерала Генри Арнольда, столь раннее окончание войны с Японией было в том числе личной заслугой Шокли[5].
В начале 1945 г. Шокли создал в Bell Labs рабочую группу для разработки полупроводниковых приборов. К сентябрю того же года корпоративные исследователи, основываясь на работах Карла Ларка-Хоровица из Университета Пёрдью (Purdue University), сузили выбор перспективных проводников до двух — германия и кремния. В январе следующего года Шокли выбрал единственно возможное, как ему тогда казалось, направление разработок — гипотетический на тот момент полевой транзистор, то есть элемент, в котором внешнее электростатическое поле затвора управляет током в массиве полупроводника. Однако, вопреки расчётам, эксперименты завершились неудачно. Объяснить произошедшее смог Джон Бардин, присоединившийся к команде в октябре 1945 г., для чего ему пришлось привлечь теорию поверхностных состояний. Совместно с Уолтером Браттейном Бардин смог экспериментально подтвердить свою гипотезу. Для Шокли это было ударом по самолюбию: до войны он сам занимался поверхностными состояниями, но не учёл их в своих расчётах. Вероятно, поэтому он устранился от участия в работе над «полевым транзистором» и вновь проявил интерес к опытам Бардина и Браттейна только в конце 1947 г., когда исследователи представили руководству Bell Labs транзисторный усилитель, в основе которого лежал первый работающий точечный транзистор. Патентные эксперты компании пришли к выводу, что все личные права на изобретение принадлежат Бардину и Браттейну, но не Шокли. Осознав, что из рук выскальзывает, возможно, главное открытие его жизни, Шокли попытался надавить на Бардина и Браттейна, чтобы они отозвали свою патентную заявку. Он считал, что сможет сам запатентовать всё, начиная с полевого эффекта. Впрочем, эта идея провалилась, поскольку патент на принцип действия полевого транзистора на тот момент уже принадлежал Юлию Лилиенфельду. В итоге Шокли смог добиться от Bell Labs того, что, хотя авторство изобретения осталось за Бардином и Браттейном, в публичных заявлениях компании в качестве изобретателей указывались трое: Бардин, Браттейн и Шокли. В соответствии с внутренней инструкцией на всех фото, предназначенных для прессы, Бардин, Браттейн и Шокли появлялись вместе. В ходе первой открытой демонстрации транзистора именно Шокли отвечал на вопросы журналистов. В итоге публика утвердилась во мнении, что у первого транзистора было три изобретателя и самый значимый вклад в изобретение внёс именно Шокли.
Вся эта история, судя по всему, не на шутку уязвила самолюбие Шокли, и он с удвоенным рвением принялся за работу, вернувшись к идее создания монолитного транзистора. Слабым местом конструкции Бардина и Браттейна были нестабильные и ненадёжные точечные контакты. Результатом работы Шокли стала трёхслойная конфигурация, которая легла в основу биполярного (плоскостного) транзистора. В апреле 1949 г. сотрудники Шокли — Морган Спаркс, Гордон Тил и Боб Микуляк — вырастили в тигле первую трёхслойную p-n-p-структуру для демонстрации «транзисторного эффекта».
В январе 1950 г. Спаркс и Тил смогли изготовить трёхслойную структуру, пригодную для изготовления радиочастотных транзисторов. Через год началось серийное производство транзисторов Шокли, которые вскоре полностью вытеснили с рынка точечные транзисторы.
Несмотря на достигнутый успех Шокли, руководство Bell Labs относилось к нему с изрядной долей осторожности. Хотя он и получил должность директора по найму новых сотрудников, это не могло в полной мере удовлетворить его амбиции. Руководители компании ценили в Шокли его умение распознавать таланты, но считали, что ему нельзя доверять руководство коллективом. Из-за Шокли компанию покинул Бардин, а также десятки менее известных специалистов. Поэтому, когда Шокли объявил об уходе из Bell Labs, многие в компании вздохнули с облегчением.
Готовясь покинуть Bell Labs, Шокли уже держал в уме идею собственного полупроводникового бизнеса. Сначала ему удалось договориться о финансировании с военно-промышленной корпорацией Raytheon, но после месяца сотрудничества инвесторы свернули проект. В поисках финансирования в августе 1955 г. Шокли обратился к химику и предпринимателю Арнольду Бекману. Тот согласился вложить средства в создание лаборатории под обещание Шокли за два года организовать серийный выпуск элементов. Новое предприятие, ставшее филиалом Beckman Instruments, получило название «Полупроводниковые лаборатории Шокли» (Shockley Semi-Conductor Laboratories). Бекман и Шокли оформили сделку, приобрели необходимые патенты и подобрали в Маунтин-Вью, близ Пало-Альто, площадку для организации опытного производства. Мало кто из квалифицированных специалистов хотел в те годы перебираться в такую глухомань. Шутка ли: здесь не было даже междугородного телефона! Сотрудников пришлось отчасти набирать буквально по объявлению, а точнее, по объявлениям — в The New York Times и New York Herald Tribune. Благодаря объявлениям было получено около трёхсот откликов, а ещё полтора десятка человек, включая Мура, Шокли нашёл в Американском физическом обществе.
Весь 1956 г. Шокли испытывал на кандидатах свои бесчеловечные HR-технологии. Например, он заставил каждого пройти психологическое тестирование. В отношении Мура эксперты Шокли пришли к выводу, что тот является «весьма одарённым, но не способным к управлению». Затем каждого из отобранных кандидатов ожидал утомительный устный экзамен[6].
В итоге к осени 1956 г. в лабораторию было принято более 30 человек, к числу которых и относились будущие участники «восьмёрки».
Шокли сфокусировал внимание команды на проекте по созданию четырёхслойного диода. В ноябре 1956 г. Нобелевский комитет объявил о награждении Бардина, Браттейна и Шокли Нобелевской премией по физике. По всей видимости, из-за утомления, вызванного вниманием прессы, официозом и путешествием на другой континент, худшие стороны личности Шокли в это время стали проявляться всё отчётливее. К весне 1957 г., когда стало понятно, что проект с четырёхслойным диодом зашёл в тупик, Шокли отстранился от работы, стал раздражительным и чрезвычайно подозрительным. Он организовал запись всех телефонных звонков, поступающих в лабораторию. Внутри самой лаборатории соблюдался режим внутренней секретности — сотрудникам запрещалось делиться результатами своих работ с коллегами. Шокли провоцировал конфликты и постоянно придирался к подчинённым. Когда его секретарша случайно уколола палец канцелярской кнопкой, занялся поисками «вредителя» и потребовал, чтобы сотрудники прошли проверку на детекторе лжи. Считается, что это «дело о кнопке» стало спусковым крючком последовавшего конфликта. Вдобавок ко всему Шокли открыто поссорился с Бекманом: отвечая на упрёки в превышении сметы, он стал угрожать тем, что вместе со своей командой найдёт другого инвестора. Реалии, однако, были таковы, что команда вовсе не горела желанием продолжать работу под руководством Шокли. В итоге несогласные во главе с Муром обратились к Бекману и предложили ему отстранить Шокли, сосредоточив все усилия на производстве биполярных транзисторов. Бекман, впрочем, не решился на столь радикальный шаг и предпринял попытку сохранить команду в прежнем составе. Однако выдернутые волосы уже нельзя было вставить назад — лаборатория разделилась на две группы. Часть сотрудников продолжила работу над четырёхслойным диодом, а вторая, втайне от Шокли, работала над совершенствованием биполярного транзистора и пыталась найти инвесторов среди нью-йоркских финансистов. «Заговор» против Шокли, в котором участвовали восемь ведущих специалистов, был составлен по всем приключенческим канонам. «Заговорщики» встретились с финансистами компании Hayden Stone в ресторане Redwood Room. Здесь один из финансистов, «краснолицый ирландец» Альфред Койл, выложил на стол десять однодолларовых банкнот: «Пусть каждый из нас распишется на каждой купюре. Это и будет наш учредительный договор»[7].
Рис. 112. Однодолларовая купюра с подписями «заговорщиков»
Результатом сотрудничества «восьмёрки» с финансистами из Hayden Stone стало создание на деньги Шермана Фэйрчайлда компании Fairchild Semiconductor. Вскоре к «восьмёрке» примкнули ещё двое из колебавшихся сотрудников Шокли[8].
Через три года Fairchild Semiconductor стала одним из технологических лидеров отрасли, а в середине 1960-х — вторым, после Texas Instruments, производителем полупроводниковых устройств в мире. По сути, Fairchild Semiconductor 1960-х гг. стала важнейшим бизнес-инкубатором Кремниевой долины и была в той или иной мере причастна к созданию множества корпораций, включая, например, AMD и Intel[9].
Оказавшись на посту директора по исследованиям и разработке ведущей инновационной корпорации, Мур глазами стратега взглянул на растущую не по дням, а по часам полупроводниковую индустрию. Какие закономерности скрывает этот рост? Что происходит в производственных цехах и лабораториях конкурентов? Как следует действовать, чтобы соответствовать требованиям рынка?
Принято считать, что наблюдение Мура, сделанное им в 1965 г., заключалось в том, что с каждым годом число транзисторов в одной интегральной микросхеме удваивается, а также что спустя десять лет Муру пришлось скорректировать свою оценку — в действительности за прошедший период удвоение происходило не каждый год, а раз в два года[10], [11], [12]. На деле это не совсем точно. Первоначальное утверждение Мура можно найти в его публикации «Втискивание большего количества компонентов в интегральные микросхемы» (Cramming More Components onto Integrated Circuits) в Electronics Magazine за 19 апреля 1965 г. Оно гласит: «Для минимальной стоимости компонентов сложность [схем] возрастала примерно в два раза за год (см. график). Конечно, в краткосрочной перспективе можно ожидать, что этот темп сохранится, если не увеличится. В более долгосрочной перспективе темпы роста менее предсказуемы, хотя нет никаких оснований полагать, что они не будут оставаться почти постоянными в течение по крайней мере десяти лет. Это означает, что к 1975 г. количество компонентов интегральной схемы при минимальной стоимости составит 65 000. Я считаю, что такая большая схема может быть построена на единой полупроводниковой пластине [wafer]»[13].
Рис. 113. Зависимость относительной стоимости производства в расчёте на компонент от количества компонентов на интегральной схеме
Чтобы лучше понимать контекст этого высказывания Мура, надо отметить, что первые прототипы интегральных микросхем появились на границе 1958–1959 гг. График в статье Мура построен по пяти точкам. Мур говорит не об интегральных схемах вообще, а об интегральных схемах с минимальной стоимостью производства в расчёте на один компонент, поэтому продемонстрированный им тренд не чисто технологический, а скорее технико-экономический. Конечно, разделить технологию и экономику на деле практически невозможно, однако Мура, как менеджера производственной корпорации, в первую очередь интересуют параметры зрелой, промышленной технологии. И наконец, Мур не пишет о транзисторах, он говорит о компонентах схемы, в число которых входят не только транзисторы, но и пассивные компоненты: резисторы, диоды и конденсаторы. Развитие производственных технологий обусловлено существующим запросом на продукты производства — индустрия не пытается увеличить количество компонентов интегральной схемы любой ценой, схемы создаются для эффективного решения востребованных в хозяйстве задач. Как заметил футуролог и экономист Шон Дюбравак, начало закону Мура положила экономика и она же приведёт к его окончанию[14]. С физической точки зрения ничто особенно не препятствует увеличению размеров интегральной микросхемы. Достаточно продвинутая цивилизация вполне могла бы создать микросхему размером с Луну, ну или по крайней мере с книжный шкаф, не опасаясь кары со стороны законов физики. Особенно если снизить рабочую частоту такой схемы и ограничить таким образом тепловыделение. Мы не знаем, как будут выглядеть вычислительные устройства через полстолетия и будут ли лежать в их основе элементы, которые мы по-прежнему будем называть интегральными схемами. Быть может, на смену матрицам кремниевых транзисторов придут совершенно иные физические структуры, быть может, наши потомки будут выращивать биологические компьютеры, используя «мокрые» технологии (wetware — компьютерные технологии, интегрированные с биологическим организмом, образовано аналогично hardware). Быть может, прогресс в устройстве самих схем прекратится и человечество сконцентрирует внимание на оптимизации крупномасштабной архитектуры вычислительных устройств.
Из текста Мура видно, что сам автор никогда не претендовал на универсальную значимость своего закона, да и само название «закон Мура» не было его изобретением. Оно было предложено в 1970 г. Карвером Мидом, исследователем из Калифорнийского технологического института. И всё же трудно найти другой пример столь же живучего технико-экономического тренда. Попытки похоронить закон Мура предпринимались неоднократно. В 1996 г. Филип Росс в статье для журнала Forbes под названием «Второй закон Мура» писал: «Цена за один транзистор достигнет дна где-то между 2003 и 2005 годами. С этого момента не будет никакого экономического смысла делать транзисторы меньше. Таким образом, закон Мура прекратит своё действие через семь лет».
Сегодня «вторым законом Мура» принято называть утверждение о том, что стоимость фабрик по производству микросхем удваивается каждые четыре года. Сам Мур называл эту закономерность «законом Рока» — в честь американского бизнесмена и одного из первых инвесторов Intel Артура Рока, который обратил внимание на эту закономерность.
Впрочем, современные 10- и 7-нанометровые микросхемы от Samsung и TSMC находятся всё ещё в непосредственной близости от кривой, заданной скорректированной в 1975 г. версией закона. В качестве очередной даты запланированной смерти закона Мура многие исследователи (включая самого Мура) в наши дни называют 2025 год. Между тем в декабре 2022 г. компания TSMC уже начала выпуск схем по 3-нанометровой технологии[15], а IBM уже анонсировала начало производства интегральных микросхем на основе 2-нанометровой технологии в четвёртом квартале 2024 г.[16] Возможно, пора ввести какую-нибудь универсальную константу: например, вне зависимости от текущей даты прогнозы об окончании действия закона Мура составляют 5–7 лет от сегодняшнего дня.
Популярность закона Мура привела к появлению множества сходных утверждений разной степени серьёзности и актуальности. Закон Кека (Keck’s law) утверждает, что скорость передачи данных по оптоволокну растёт экспоненциально и по более крутой экспоненте, чем в законе Мура. Закон Мэкрона (Machrone’s law) гласит: персональный компьютер, который вы хотите купить, всегда стоит 5000 долларов. Согласно закону Вирта (Wirth’s law) программное обеспечение замедляется быстрее, чем ускоряется аппаратное, и так далее[17].
В 1983 г. журнал «В мире науки» писал: «Если бы авиапромышленность в последние 25 лет развивалась столь же стремительно, как промышленность средств вычислительной техники, то сейчас самолёт Boeing 767 стоил бы 500 долл. и совершал облёт земного шара за 20 минут, затрачивая при этом пять галлонов (≈19 л) топлива. Приведённые цифры весьма точно отражают снижение стоимости, рост быстродействия и повышение экономичности ЭВМ».
Итак, закон Мура — это эмпирическое наблюдение относительно одного из параметров интегральных схем. Во-первых, оно не имеет прямого отношения к производительности машин, во-вторых, не является законом в том смысле, в котором законом является первый закон термодинамики или закон сохранения энергии. Количество элементов интегральных схем не обязано и дальше увеличиваться теми же темпами. Своё отношение к физической стороне вопроса Мур высказал в 2003 г., опубликовав работу под названием «Ни одна экспонента не вечна: но „вечность“ можно отсрочить!» (No Exponential Is Forever: But We Can Delay “Forever”!), в которой среди прочего указал на то, что рост физических величин по экспоненте в течение длительного временно́го периода невозможен. В 2007 г. Мур выразился ещё более конкретно, указав на атомарную природу вещества и ограничение скорости передачи сигнала скоростью света как на фундаментальные физические лимиты, которые рано или поздно встанут на пути совершенствования вычислительной техники.
- ↑ Moore G. E. (1998). Cramming More Components Onto Integrated Circuits. Reprinter from Electronics, volume 38, number 8, April 19, 1965, p.114 / Proceedings of the IEEE, Vol. 86, Iss. 1 // https://doi.org/10.1109/jproc.1998.658762
- ↑ Lécuyer C., Brock D. C. (2010). Makers of the Microchip: A Documentary History of Fairchild Semiconductor. MIT Press // https://books.google.ru/books?id=LaZpUpkG70QC
- ↑ Shurkin J. N. (2006). Broken Genius: The Rise and Fall of William Shockley, Creator of the Electronic Age. International series on advances in solid state electronics and technology. Palgrave Macmillan // https://books.google.ru/books?id=cRb_qzEwWWAC
- ↑ Moll J. (1995). Wiliam Bradford Shockley. A biographical memoir / Biographical Memoirs, Vol. 68. National Academies Press // https://books.google.ru/books?id=5NgoqLe_B5kC
- ↑ Shurkin J. N. (2006). Broken Genius: The Rise and Fall of William Shockley, Creator of the Electronic Age. International series on advances in solid state electronics and technology. Palgrave Macmillan // https://books.google.ru/books?id=cRb_qzEwWWAC
- ↑ Shurkin J. N. (2006). Broken Genius: The Rise and Fall of William Shockley, Creator of the Electronic Age. International series on advances in solid state electronics and technology. Palgrave Macmillan // https://books.google.ru/books?id=cRb_qzEwWWAC
- ↑ Berlin L. (2007). Tracing Silicon Valley's roots / San Francisco Chronicle, 2007, September 30 // https://www.sfgate.com/business/article/Tracing-Silicon-Valley-s-roots-2520298.php
- ↑ Lojek B. (2007). History of semiconductor engineering. Springer Science & Business Media // https://books.google.ru/books?id=2cu1Oh_COv8C
- ↑ Lécuyer C., Brock D. C. (2010). Makers of the Microchip: A Documentary History of Fairchild Semiconductor. MIT Press // https://books.google.ru/books?id=LaZpUpkG70QC
- ↑ * Иногда в популярных источниках называют срок, равный 18 месяцам, — он связан с прогнозом Давида Хауса, многолетнего главы компании Intel, который считал, что производительность процессоров должна удваиваться каждые 18 месяцев за счёт комбинации действия закона Мура и увеличения тактовых частот процессоров. Ретроспективная оценка показывает, что прогноз Хауса был близок к истине, более поздние оценки дают величину, равную примерно 20 месяцам.
- ↑ Kanellos M. (2003). Moore's Law to roll on for another decade / c|net, Feb. 11, 2003 // https://www.cnet.com/news/moores-law-to-roll-on-for-another-decade/
- ↑ Denning P. J., Lewis T. G. (2017). Exponential Laws of Computing Growth / Communications of the ACM, January 2017, Vol. 60, No. 1, pp. 54—65 // https://doi.org/10.1145/2976758
- ↑ Moore G. E. (1998). Cramming More Components Onto Integrated Circuits. Reprinter from Electronics, volume 38, number 8, April 19, 1965, p. 114 / Proceedings of the IEEE, Vol. 86, Iss. 1 // https://doi.org/10.1109/jproc.1998.658762
- ↑ DuBravac S. (2016). Moore’s Law Begins and Ends with Economics / Tech.pinions | Perspective, insight, analysis, July 18, 2016 // https://techpinions.com/moores-law-begins-and-ends-with-economics/46575
- ↑ TSMC (2023). TSMC Holds 3nm Volume Production and Capacity Expansion Ceremony, Marking a Key Milestone for Advanced Manufacturing. / TSMC, 29.12.2022 // https://pr.tsmc.com/english/news/2986
- ↑ Касми Э. (2021). Создан первый в мире процессор с топологией 2 нм / C•News, 06.05.2021 // https://www.cnews.ru/news/top/2021-05-06_sozdan_pervyj_v_mire_protsessor
- ↑ Philip E. Ross (2003). The rules engineers live by weren’t always set in stone / IEEE Spectrum, December 2003 // https://www.gwern.net/docs/cs/2003-ross.pdf