Перейти к содержанию

5.3.1 Гордон Мур и его закон

Материал из Охота на электроовец: Большая Книга Искусственного Интеллекта
Версия от 21:38, 8 мая 2025; Andrey Fedichkin (обсуждение | вклад)
(разн.) ← Предыдущая версия | Текущая версия (разн.) | Следующая версия → (разн.)

Технический прогресс не стоит на месте, и человечество создаёт всё более новые и совершенные вычислительные машины. В популярной литературе нередко можно встретить утверждение, что вычислительная мощность машин возрастает в экспоненциальной прогрессии и что эта закономерность называется законом Мура. Дошло до того, что некоторые люди считают, что «закон Мура» — это просто другое название экспоненциального роста (например, в сетевой дискуссии один из пользователей Facebook недавно заявил, что коронавирус COVID-19 распространяется в соответствии с законом Мура). Оставим на этом моменте эпидемиологов наедине с их фейспалмом, а сами попробуем разобраться, что же такое закон Мура, чем он является и чем совершенно точно не является.

Мы знаем Гордона Мура (не путать с Эдвардом!) как американского бизнесмена, инженера, сооснователя и почётного председателя корпорации Intel. В 1965 г., когда Мур опубликовал работу[1], посвящённую своему знаменитому наблюдению, он был известен как директор по исследованиям и разработке компании Fairchild Semiconductor и один из членов так называемой «Вероломной восьмёрки» (The Traitorous Eight). История самого знаменитого «предательства» в истории вычислительной техники началась в 1956 г., когда лауреат Нобелевской премии по физике 1956 г. Уильям Шокли при поддержке калифорнийского предпринимателя Арнольда Бекмана основал производственную лабораторию, которая стала одним из истоков Кремниевой долины[2].

Для разработки и организации производства новых полупроводниковых приборов Шокли собрал команду, состоявшую из молодых специалистов — физиков и инженеров. По мнению современников, в личности Шокли сочетались неоспоримый талант учёного, а также тяга к постоянному соперничеству и глухота к интересам и мнениям других людей. Шокли гордился своим интеллектуальным превосходством над другими людьми, а также собственным телом. Позже, в 1960-е гг., — по всей видимости под влиянием этих мыслей, а также, вероятно, полученных в автокатастрофе повреждений головного мозга — он придёт к идеям евгеники и начнёт публичную кампанию против «вырождения» американской нации, что в итоге окончательно разрушит его репутацию и сделает его персоной нон грата в научном сообществе.

Особенности характера Шокли не единожды приводили к конфликтам с другими людьми — человеколюбие никогда не было его сильной стороной.

Противоречивый характер Шокли проявлялся с самого детства. Раннее развитие (в пять месяцев он научился произносить собственное имя, а в двенадцать уже умел считать до четырёх и узнавал буквы алфавита) сочеталось в нём с приступами неуправляемой агрессии, во время которых он кусал родителей и бился в конвульсиях. Родители Шокли были довольно необычными людьми. Отец — потомок пилигримов с «Мейфлауэра», сын шкипера-китобоя и выпускник MIT — сколотил небольшое состояние, работая горным инженером, и занялся биржевой торговлей. Мать — выпускница Стэнфорда и первая в США женщина, ставшая горным инспектором. Отец был старше матери на 22 года. После свадьбы супруги перебрались в Лондон, где в 1910 г. и появился на свет Уильям Шокли. Родители мальчика пытались решить проблему приступов агрессии у сына различными способами, включавшими в себя телесные наказания и различные психологические эксперименты, они меняли нянек и ограничивали его общение со сверстниками. Биржевая торговля Шокли-старшего не принесла ему желаемых доходов, и в 1913 г. семья из-за финансовых проблем была вынуждена вернуться в США и обосноваться в Калифорнии. Только в восемь лет родители Шокли отдали его в школу, а год спустя — в Военную академию Пало-Алто (Palo Alto Military Academy, PAMA). К удивлению родителей, мальчик смог достаточно быстро адаптироваться в учебном заведении, где не только отлично учился, но и вполне прилично себя вёл. В 1927 г., после окончания школы (несколько классов которой он пропустил из-за планов родителей вернуться в Лондон), он поступил в Калифорнийский университет в Лос-Анджелесе (University of California, Los Angeles, UCLA), а осенью следующего года перешёл в Калифорнийский технологический институт (California Institute of Technology, Caltech), в те годы фокусировавшийся исключительно на фундаментальных научных исследованиях под руководством нобелевского лауреата Роберта Милликена. Это были годы формирования фундамента квантовой механики, которая и стала основной специализацией Шокли. Его учебный план составил лично Лайнус Полинг — в будущем дважды нобелевский лауреат, а наибольшее влияние на Шокли, по его собственному признанию, оказали преподаватели теоретической физики Ричард Толмен и Уильям Хьюстон. Именно в университетские годы в полной мере проявилась доминирующая черта характера Шокли — его постоянное стремление к соперничеству[3], [4].

В годы Второй мировой Шокли участвовал в разработке тактики стратегических бомбардировок и в других военных исследованиях. Придя к выводу, что эффективность бомбовых налётов на Японию была крайне низкой, Шокли порекомендовал «изучить альтернативы». Доподлинно неизвестно, имел ли Шокли в виду атомную бомбардировку, однако он, несомненно, был в курсе прогресса в этой области. Ещё летом 1940 г., будучи сотрудником Bell Labs, Шокли совместно с Джеймсом Фиском представил руководству доклад, в котором указал, что уран может служить источником изотопов для «грязных» бомб, а также на принципиальную возможность создания атомной бомбы. По мнению командующего ВВС США генерала Генри Арнольда, столь раннее окончание войны с Японией было в том числе личной заслугой Шокли[5].

В начале 1945 г. Шокли создал в Bell Labs рабочую группу для разработки полупроводниковых приборов. К сентябрю того же года корпоративные исследователи, основываясь на работах Карла Ларка-Хоровица из Университета Пёрдью (Purdue University), сузили выбор перспективных проводников до двух — германия и кремния. В январе следующего года Шокли выбрал единственно возможное, как ему тогда казалось, направление разработок — гипотетический на тот момент полевой транзистор, то есть элемент, в котором внешнее электростатическое поле затвора управляет током в массиве полупроводника. Однако, вопреки расчётам, эксперименты завершились неудачно. Объяснить произошедшее смог Джон Бардин, присоединившийся к команде в октябре 1945 г., для чего ему пришлось привлечь теорию поверхностных состояний. Совместно с Уолтером Браттейном Бардин смог экспериментально подтвердить свою гипотезу. Для Шокли это было ударом по самолюбию: до войны он сам занимался поверхностными состояниями, но не учёл их в своих расчётах. Вероятно, поэтому он устранился от участия в работе над «полевым транзистором» и вновь проявил интерес к опытам Бардина и Браттейна только в конце 1947 г., когда исследователи представили руководству Bell Labs транзисторный усилитель, в основе которого лежал первый работающий точечный транзистор. Патентные эксперты компании пришли к выводу, что все личные права на изобретение принадлежат Бардину и Браттейну, но не Шокли. Осознав, что из рук выскальзывает, возможно, главное открытие его жизни, Шокли попытался надавить на Бардина и Браттейна, чтобы они отозвали свою патентную заявку. Он считал, что сможет сам запатентовать всё, начиная с полевого эффекта. Впрочем, эта идея провалилась, поскольку патент на принцип действия полевого транзистора на тот момент уже принадлежал Юлию Лилиенфельду. В итоге Шокли смог добиться от Bell Labs того, что, хотя авторство изобретения осталось за Бардином и Браттейном, в публичных заявлениях компании в качестве изобретателей указывались трое: Бардин, Браттейн и Шокли. В соответствии с внутренней инструкцией на всех фото, предназначенных для прессы, Бардин, Браттейн и Шокли появлялись вместе. В ходе первой открытой демонстрации транзистора именно Шокли отвечал на вопросы журналистов. В итоге публика утвердилась во мнении, что у первого транзистора было три изобретателя и самый значимый вклад в изобретение внёс именно Шокли.

Вся эта история, судя по всему, не на шутку уязвила самолюбие Шокли, и он с удвоенным рвением принялся за работу, вернувшись к идее создания монолитного транзистора. Слабым местом конструкции Бардина и Браттейна были нестабильные и ненадёжные точечные контакты. Результатом работы Шокли стала трёхслойная конфигурация, которая легла в основу биполярного (плоскостного) транзистора. В апреле 1949 г. сотрудники Шокли — Морган Спаркс, Гордон Тил и Боб Микуляк — вырастили в тигле первую трёхслойную p-n-p-структуру для демонстрации «транзисторного эффекта».

В январе 1950 г. Спаркс и Тил смогли изготовить трёхслойную структуру, пригодную для изготовления радиочастотных транзисторов. Через год началось серийное производство транзисторов Шокли, которые вскоре полностью вытеснили с рынка точечные транзисторы.

Несмотря на достигнутый успех Шокли, руководство Bell Labs относилось к нему с изрядной долей осторожности. Хотя он и получил должность директора по найму новых сотрудников, это не могло в полной мере удовлетворить его амбиции. Руководители компании ценили в Шокли его умение распознавать таланты, но считали, что ему нельзя доверять руководство коллективом. Из-за Шокли компанию покинул Бардин, а также десятки менее известных специалистов. Поэтому, когда Шокли объявил об уходе из Bell Labs, многие в компании вздохнули с облегчением.

Готовясь покинуть Bell Labs, Шокли уже держал в уме идею собственного полупроводникового бизнеса. Сначала ему удалось договориться о финансировании с военно-промышленной корпорацией Raytheon, но после месяца сотрудничества инвесторы свернули проект. В поисках финансирования в августе 1955 г. Шокли обратился к химику и предпринимателю Арнольду Бекману. Тот согласился вложить средства в создание лаборатории под обещание Шокли за два года организовать серийный выпуск элементов. Новое предприятие, ставшее филиалом Beckman Instruments, получило название «Полупроводниковые лаборатории Шокли» (Shockley Semi-Conductor Laboratories). Бекман и Шокли оформили сделку, приобрели необходимые патенты и подобрали в Маунтин-Вью, близ Пало-Альто, площадку для организации опытного производства. Мало кто из квалифицированных специалистов хотел в те годы перебираться в такую глухомань. Шутка ли: здесь не было даже междугородного телефона! Сотрудников пришлось отчасти набирать буквально по объявлению, а точнее, по объявлениям — в The New York Times и New York Herald Tribune. Благодаря объявлениям было получено около трёхсот откликов, а ещё полтора десятка человек, включая Мура, Шокли нашёл в Американском физическом обществе.

Весь 1956 г. Шокли испытывал на кандидатах свои бесчеловечные HR-технологии. Например, он заставил каждого пройти психологическое тестирование. В отношении Мура эксперты Шокли пришли к выводу, что тот является «весьма одарённым, но не способным к управлению». Затем каждого из отобранных кандидатов ожидал утомительный устный экзамен[6].

В итоге к осени 1956 г. в лабораторию было принято более 30 человек, к числу которых и относились будущие участники «восьмёрки».

Шокли сфокусировал внимание команды на проекте по созданию четырёхслойного диода. В ноябре 1956 г. Нобелевский комитет объявил о награждении Бардина, Браттейна и Шокли Нобелевской премией по физике. По всей видимости, из-за утомления, вызванного вниманием прессы, официозом и путешествием на другой континент, худшие стороны личности Шокли в это время стали проявляться всё отчётливее. К весне 1957 г., когда стало понятно, что проект с четырёхслойным диодом зашёл в тупик, Шокли отстранился от работы, стал раздражительным и чрезвычайно подозрительным. Он организовал запись всех телефонных звонков, поступающих в лабораторию. Внутри самой лаборатории соблюдался режим внутренней секретности — сотрудникам запрещалось делиться результатами своих работ с коллегами. Шокли провоцировал конфликты и постоянно придирался к подчинённым. Когда его секретарша случайно уколола палец канцелярской кнопкой, занялся поисками «вредителя» и потребовал, чтобы сотрудники прошли проверку на детекторе лжи. Считается, что это «дело о кнопке» стало спусковым крючком последовавшего конфликта. Вдобавок ко всему Шокли открыто поссорился с Бекманом: отвечая на упрёки в превышении сметы, он стал угрожать тем, что вместе со своей командой найдёт другого инвестора. Реалии, однако, были таковы, что команда вовсе не горела желанием продолжать работу под руководством Шокли. В итоге несогласные во главе с Муром обратились к Бекману и предложили ему отстранить Шокли, сосредоточив все усилия на производстве биполярных транзисторов. Бекман, впрочем, не решился на столь радикальный шаг и предпринял попытку сохранить команду в прежнем составе. Однако выдернутые волосы уже нельзя было вставить назад — лаборатория разделилась на две группы. Часть сотрудников продолжила работу над четырёхслойным диодом, а вторая, втайне от Шокли, работала над совершенствованием биполярного транзистора и пыталась найти инвесторов среди нью-йоркских финансистов. «Заговор» против Шокли, в котором участвовали восемь ведущих специалистов, был составлен по всем приключенческим канонам. «Заговорщики» встретились с финансистами компании Hayden Stone в ресторане Redwood Room. Здесь один из финансистов, «краснолицый ирландец» Альфред Койл, выложил на стол десять однодолларовых банкнот: «Пусть каждый из нас распишется на каждой купюре. Это и будет наш учредительный договор»[7].

Рис. 112. Однодолларовая купюра с подписями «заговорщиков»

Результатом сотрудничества «восьмёрки» с финансистами из Hayden Stone стало создание на деньги Шермана Фэйрчайлда компании Fairchild Semiconductor. Вскоре к «восьмёрке» примкнули ещё двое из колебавшихся сотрудников Шокли[8].

Через три года Fairchild Semiconductor стала одним из технологических лидеров отрасли, а в середине 1960-х — вторым, после Texas Instruments, производителем полупроводниковых устройств в мире. По сути, Fairchild Semiconductor 1960-х гг. стала важнейшим бизнес-инкубатором Кремниевой долины и была в той или иной мере причастна к созданию множества корпораций, включая, например, AMD и Intel[9].

Оказавшись на посту директора по исследованиям и разработке ведущей инновационной корпорации, Мур глазами стратега взглянул на растущую не по дням, а по часам полупроводниковую индустрию. Какие закономерности скрывает этот рост? Что происходит в производственных цехах и лабораториях конкурентов? Как следует действовать, чтобы соответствовать требованиям рынка?

Принято считать, что наблюдение Мура, сделанное им в 1965 г., заключалось в том, что с каждым годом число транзисторов в одной интегральной микросхеме удваивается, а также что спустя десять лет Муру пришлось скорректировать свою оценку — в действительности за прошедший период удвоение происходило не каждый год, а раз в два года[10], [11], [12]. На деле это не совсем точно. Первоначальное утверждение Мура можно найти в его публикации «Втискивание большего количества компонентов в интегральные микросхемы» (Cramming More Components onto Integrated Circuits) в Electronics Magazine за 19 апреля 1965 г. Оно гласит: «Для минимальной стоимости компонентов сложность [схем] возрастала примерно в два раза за год (см. график). Конечно, в краткосрочной перспективе можно ожидать, что этот темп сохранится, если не увеличится. В более долгосрочной перспективе темпы роста менее предсказуемы, хотя нет никаких оснований полагать, что они не будут оставаться почти постоянными в течение по крайней мере десяти лет. Это означает, что к 1975 г. количество компонентов интегральной схемы при минимальной стоимости составит 65 000. Я считаю, что такая большая схема может быть построена на единой полупроводниковой пластине [wafer]»[13].

Рис. 113. Зависимость относительной стоимости производства в расчёте на компонент от количества компонентов на интегральной схеме

Чтобы лучше понимать контекст этого высказывания Мура, надо отметить, что первые прототипы интегральных микросхем появились на границе 1958–1959 гг. График в статье Мура построен по пяти точкам. Мур говорит не об интегральных схемах вообще, а об интегральных схемах с минимальной стоимостью производства в расчёте на один компонент, поэтому продемонстрированный им тренд не чисто технологический, а скорее технико-экономический. Конечно, разделить технологию и экономику на деле практически невозможно, однако Мура, как менеджера производственной корпорации, в первую очередь интересуют параметры зрелой, промышленной технологии. И наконец, Мур не пишет о транзисторах, он говорит о компонентах схемы, в число которых входят не только транзисторы, но и пассивные компоненты: резисторы, диоды и конденсаторы. Развитие производственных технологий обусловлено существующим запросом на продукты производства — индустрия не пытается увеличить количество компонентов интегральной схемы любой ценой, схемы создаются для эффективного решения востребованных в хозяйстве задач. Как заметил футуролог и экономист Шон Дюбравак, начало закону Мура положила экономика и она же приведёт к его окончанию[14]. С физической точки зрения ничто особенно не препятствует увеличению размеров интегральной микросхемы. Достаточно продвинутая цивилизация вполне могла бы создать микросхему размером с Луну, ну или по крайней мере с книжный шкаф, не опасаясь кары со стороны законов физики. Особенно если снизить рабочую частоту такой схемы и ограничить таким образом тепловыделение. Мы не знаем, как будут выглядеть вычислительные устройства через полстолетия и будут ли лежать в их основе элементы, которые мы по-прежнему будем называть интегральными схемами. Быть может, на смену матрицам кремниевых транзисторов придут совершенно иные физические структуры, быть может, наши потомки будут выращивать биологические компьютеры, используя «мокрые» технологии (wetware — компьютерные технологии, интегрированные с биологическим организмом, образовано аналогично hardware). Быть может, прогресс в устройстве самих схем прекратится и человечество сконцентрирует внимание на оптимизации крупномасштабной архитектуры вычислительных устройств.

Из текста Мура видно, что сам автор никогда не претендовал на универсальную значимость своего закона, да и само название «закон Мура» не было его изобретением. Оно было предложено в 1970 г. Карвером Мидом, исследователем из Калифорнийского технологического института. И всё же трудно найти другой пример столь же живучего технико-экономического тренда. Попытки похоронить закон Мура предпринимались неоднократно. В 1996 г. Филип Росс в статье для журнала Forbes под названием «Второй закон Мура» писал: «Цена за один транзистор достигнет дна где-то между 2003 и 2005 годами. С этого момента не будет никакого экономического смысла делать транзисторы меньше. Таким образом, закон Мура прекратит своё действие через семь лет».

Сегодня «вторым законом Мура» принято называть утверждение о том, что стоимость фабрик по производству микросхем удваивается каждые четыре года. Сам Мур называл эту закономерность «законом Рока» — в честь американского бизнесмена и одного из первых инвесторов Intel Артура Рока, который обратил внимание на эту закономерность.

Впрочем, современные 10- и 7-нанометровые микросхемы от Samsung и TSMC находятся всё ещё в непосредственной близости от кривой, заданной скорректированной в 1975 г. версией закона. В качестве очередной даты запланированной смерти закона Мура многие исследователи (включая самого Мура) в наши дни называют 2025 год. Между тем в декабре 2022 г. компания TSMC уже начала выпуск схем по 3-нанометровой технологии[15], а IBM уже анонсировала начало производства интегральных микросхем на основе 2-нанометровой технологии в четвёртом квартале 2024 г.[16] Возможно, пора ввести какую-нибудь универсальную константу: например, вне зависимости от текущей даты прогнозы об окончании действия закона Мура составляют 5–7 лет от сегодняшнего дня.

Популярность закона Мура привела к появлению множества сходных утверждений разной степени серьёзности и актуальности. Закон Кека (Keck’s law) утверждает, что скорость передачи данных по оптоволокну растёт экспоненциально и по более крутой экспоненте, чем в законе Мура. Закон Мэкрона (Machrone’s law) гласит: персональный компьютер, который вы хотите купить, всегда стоит 5000 долларов. Согласно закону Вирта (Wirth’s law) программное обеспечение замедляется быстрее, чем ускоряется аппаратное, и так далее[17].

В 1983 г. журнал «В мире науки» писал: «Если бы авиапромышленность в последние 25 лет развивалась столь же стремительно, как промышленность средств вычислительной техники, то сейчас самолёт Boeing 767 стоил бы 500 долл. и совершал облёт земного шара за 20 минут, затрачивая при этом пять галлонов (≈19 л) топлива. Приведённые цифры весьма точно отражают снижение стоимости, рост быстродействия и повышение экономичности ЭВМ».

Итак, закон Мура — это эмпирическое наблюдение относительно одного из параметров интегральных схем. Во-первых, оно не имеет прямого отношения к производительности машин, во-вторых, не является законом в том смысле, в котором законом является первый закон термодинамики или закон сохранения энергии. Количество элементов интегральных схем не обязано и дальше увеличиваться теми же темпами. Своё отношение к физической стороне вопроса Мур высказал в 2003 г., опубликовав работу под названием «Ни одна экспонента не вечна: но „вечность“ можно отсрочить!» (No Exponential Is Forever: But We Can Delay “Forever”!), в которой среди прочего указал на то, что рост физических величин по экспоненте в течение длительного временно́го периода невозможен. В 2007 г. Мур выразился ещё более конкретно, указав на атомарную природу вещества и ограничение скорости передачи сигнала скоростью света как на фундаментальные физические лимиты, которые рано или поздно встанут на пути совершенствования вычислительной техники.

  1. Moore G. E. (1998). Cramming More Components Onto Integrated Circuits. Reprinter from Electronics, volume 38, number 8, April 19, 1965, p.114 / Proceedings of the IEEE, Vol. 86, Iss. 1 // https://doi.org/10.1109/jproc.1998.658762
  2. Lécuyer C., Brock D. C. (2010). Makers of the Microchip: A Documentary History of Fairchild Semiconductor. MIT Press // https://books.google.ru/books?id=LaZpUpkG70QC
  3. Shurkin J. N. (2006). Broken Genius: The Rise and Fall of William Shockley, Creator of the Electronic Age. International series on advances in solid state electronics and technology. Palgrave Macmillan // https://books.google.ru/books?id=cRb_qzEwWWAC
  4. Moll J. (1995). Wiliam Bradford Shockley. A biographical memoir / Biographical Memoirs, Vol. 68. National Academies Press // https://books.google.ru/books?id=5NgoqLe_B5kC
  5. Shurkin J. N. (2006). Broken Genius: The Rise and Fall of William Shockley, Creator of the Electronic Age. International series on advances in solid state electronics and technology. Palgrave Macmillan // https://books.google.ru/books?id=cRb_qzEwWWAC
  6. Shurkin J. N. (2006). Broken Genius: The Rise and Fall of William Shockley, Creator of the Electronic Age. International series on advances in solid state electronics and technology. Palgrave Macmillan // https://books.google.ru/books?id=cRb_qzEwWWAC
  7. Berlin L. (2007). Tracing Silicon Valley's roots / San Francisco Chronicle, 2007, September 30 // https://www.sfgate.com/business/article/Tracing-Silicon-Valley-s-roots-2520298.php
  8. Lojek B. (2007). History of semiconductor engineering. Springer Science & Business Media // https://books.google.ru/books?id=2cu1Oh_COv8C
  9. Lécuyer C., Brock D. C. (2010). Makers of the Microchip: A Documentary History of Fairchild Semiconductor. MIT Press // https://books.google.ru/books?id=LaZpUpkG70QC
  10. * Иногда в популярных источниках называют срок, равный 18 месяцам, — он связан с прогнозом Давида Хауса, многолетнего главы компании Intel, который считал, что производительность процессоров должна удваиваться каждые 18 месяцев за счёт комбинации действия закона Мура и увеличения тактовых частот процессоров. Ретроспективная оценка показывает, что прогноз Хауса был близок к истине, более поздние оценки дают величину, равную примерно 20 месяцам.
  11. Kanellos M. (2003). Moore's Law to roll on for another decade / c|net, Feb. 11, 2003 // https://www.cnet.com/news/moores-law-to-roll-on-for-another-decade/
  12. Denning P. J., Lewis T. G. (2017). Exponential Laws of Computing Growth / Communications of the ACM, January 2017, Vol. 60, No. 1, pp. 54—65 // https://doi.org/10.1145/2976758
  13. Moore G. E. (1998). Cramming More Components Onto Integrated Circuits. Reprinter from Electronics, volume 38, number 8, April 19, 1965, p. 114 / Proceedings of the IEEE, Vol. 86, Iss. 1 // https://doi.org/10.1109/jproc.1998.658762
  14. DuBravac S. (2016). Moore’s Law Begins and Ends with Economics / Tech.pinions | Perspective, insight, analysis, July 18, 2016 // https://techpinions.com/moores-law-begins-and-ends-with-economics/46575
  15. TSMC (2023). TSMC Holds 3nm Volume Production and Capacity Expansion Ceremony, Marking a Key Milestone for Advanced Manufacturing. / TSMC, 29.12.2022 // https://pr.tsmc.com/english/news/2986
  16. Касми Э. (2021). Создан первый в мире процессор с топологией 2 нм / C•News, 06.05.2021 // https://www.cnews.ru/news/top/2021-05-06_sozdan_pervyj_v_mire_protsessor
  17. Philip E. Ross (2003). The rules engineers live by weren’t always set in stone / IEEE Spectrum, December 2003 // https://www.gwern.net/docs/cs/2003-ross.pdf
Loading comments...