2.4.2 Доработка таблиц Морского альманаха. Первая модель разностной машины
В 1820 г., вернувшись в Англию, Бэббидж вместе с Джоном Гершелем становятся участниками собственного проекта, связанного с табличными расчётами. Только что основанное Астрономическое общество поручает им заняться улучшением астрономических таблиц «Морского альманаха» (The Nautical Almanac). Это издание вело свою историю с 1766 г., когда британское правительство поручило его ежегодный выпуск королевскому астроному Нэвилу Маскелайну. Маскелайн неслучайно стал руководителем одного из первых в мире постоянных проектов по подготовке математических таблиц[1] (первым подобным проектом был всё же французский ежегодник «Знание времени или движение звёзд» (Connaissance des Temps ou des mouvements célestes))[2]. Именно он был одним из авторов «метода лунных расстояний» (Маскелайн основывался на работах, прежде всего, Тобиаса Майера, уже упоминавшегося в этой книге Жан-Батиста Морена, а также, по всей видимости, Никола Луи де Лакайля и Жозефа Жерома Лефрансуа де Лаланда[3]), позволяющего вычислять гринвичское время на основании измерения угла между Луной и другими небесными телами. Зная гринвичское время, можно затем достаточно точно определить географическую долготу без использования спутников GPS или ГЛОНАСС, которые в конце XVIII в. ещё не были запущены на орбиту[4].
Конечно, гринвичское время можно было узнать при помощи корабельного хронометра, однако такие устройства в конце XVIII — начале XIX в. только начинали входить в обиход и были ещё слишком дороги или недостаточно точны: механические часы трудно сделать точными в условиях морской качки. Во многом благодаря литературному таланту писательницы Давы Собел с её монументальным бестселлером «Долгота» (а затем и одноимённому телесериалу) сформировался образ Маскелайна-злодея, антагониста Джона Гаррисона — гениального изобретателя первого морского хронометра, позволившего определять долготу на корабле в море с точностью до 1°. Однако действительность была куда более прозаичной — «Морской альманах» и метод лунных расстояний вплоть до второй половины XIX в. оставались более практичной и дешёвой альтернативой дорогим и капризным механическим устройствам[5]. Прозванный «Библией моряка»[6] альманах Маскелайна сделал навигацию гораздо точнее, однако точность таблиц, публиковавшихся в нём, часто оставляла желать лучшего: она сильно зависела от аккуратности вычислений, выполняемых вручную людьми, к тому же разделёнными географически.
Бэббидж и Гершель начали свою работу над доработкой таблиц «Морского альманаха» с того, что выбрали необходимые для вычислений формулы и распределили расчёты среди клерков. Чтобы уменьшить число ошибок, каждое из вычислений осуществлялось параллельно двумя независимыми вычислителями, а затем полученные результаты подвергались сравнению. В ходе утомительных проверок Гершель и Бэббидж обнаружили ряд ошибок, и в какой-то момент Бэббидж, обращаясь к небесам, сказал, что хочет, чтобы подобные вычисления осуществлялись при помощи пара, на что Гершель заметил, что подобное вполне возможно.
Впрочем, если верить более поздней автобиографии Бэббиджа, первые мысли об автоматизации табличных расчётов возникли у него ещё раньше. Припоминая эпизод, произошедший в 1812 или 1813 г., Бэббидж пишет: «…Я сидел в помещении Аналитического общества, в Кембридже, склонив голову над столом в каком-то мечтательном настроении, с лежащей передо мной таблицей логарифмов. Другой член общества вошёл в комнату и, увидев меня в полудрёме, спросил: „Что, Бэббидж, о чём мечтаешь?“ На что я ответил: „Я думаю, что все эти таблицы (тут я указал на логарифмы) могут быть рассчитаны машинами“»[7].
Уникальная роль Бэббиджа в обработке информации в XIX в. связана с тем, что он одновременно был математиком и экономистом: как математик он видел потребность в надёжных таблицах и знал принципы их создания, но именно как экономист он оценил значимость организационных технологий де Прони и был способен развить их. Де Прони разработал свой метод на основе принципов производства в то время, когда фабричная организация базировалась на ручном труде с применением чрезвычайно простых инструментов, но за последующие тридцать лет производство сделало огромный шаг вперёд. На смену рабочим фабрик по производству булавок, подобных фабрике, описанной Адамом Смитом, в определённый момент пришли машины. Машину для производства булавок изобрёл Джон Айленд Хоув в 1832 г., а спустя семь лет его фабрика в Коннектикуте уже производила 72 000 булавок в сутки[8]. Бэббидж решил, что, вместо того чтобы воспроизводить трудоёмкие и дорогостоящие процессы де Прони, он применит новейшие производственные технологии и создаст машину для изготовления таблиц. Бэббидж назвал её «разностной машиной» (Difference engine), поскольку в её основу должен был лечь всё тот же «метод разностей», использовавшийся де Прони[9].
Бэббидж знал, что большая часть ошибок в таблицах связана не с расчётами, а с типографскими огрехами, поэтому проект машины изначально предполагал наличие печатного устройства. Примерно в 1820 или в 1821 г. Бэббидж начал работу над машиной, разработав несколько конструкций вычислительных механизмов, способных приводить в движение наборы печатающих колёс. Он сделал небольшую модель, состоящую из 96 колёс и 24 осей, а затем уменьшил число колёс до 18, а осей — до 3. Машина была готова к исходу весны 1822 г., а в июне — продемонстрирована членам Астрономического общества[10].
Рабочая модель включала в себя расчётный механизм, позволяющий работать с разностями второго порядка, однако механизм печати отсутствовал. В ходе демонстрации модель успешно вычислила тридцать значений выражения x2 + x + 41 — это был излюбленный пример Бэббиджа, поскольку он содержал много простых чисел. Машина выдавала правильные результаты со скоростью 33 цифры в минуту, поэтому демонстрационный расчёт занял в общей сложности две с половиной минуты[11].
- ↑ Computing the Nautical Almanac, Called the "Seaman's Bible" / Jeremy Norman's HistoryOfInformation.com // http://www.historyofinformation.com/expanded.php?id=485
- ↑ May W. E., Jones S. S. D., Howard J. L., Logsdon T. S., Anderson E. W., Richey M. W. Navigation | technology / Encyclopædia Britannica // https://www.britannica.com/technology/navigation-technology#ref363598
- ↑ Higgitt R., Dunn R., Jones P. (2016). Navigational Enterprises in Europe and its Empires, 1730—1850. Palgrave Macmillan UK // https://books.google.ru/books?id=K8ObCwAAQBAJ
- ↑ Parkinson B. W., Stansell T., Beard R., Gromov K. (1995). A History of Satellite Navigation / Navigation, Vol. 42, pp. 109–164 // https://onlinelibrary.wiley.com/doi/abs/10.1002/j.2161-4296.1995.tb02333.x
- ↑ Stephanie P. (2011). Into the breeches: A makeover for Longitude’s villain / New Scientist, Iss. 2814, published 28 May // https://www.newscientist.com/article/mg21028141-500-into-the-breeches-a-makeover-for-longitudes-villain/
- ↑ Computing the Nautical Almanac, Called the "Seaman's Bible" / Jeremy Norman's HistoryOfInformation.com // http://www.historyofinformation.com/expanded.php?id=485
- ↑ Dalakov G. The Differential Engine of Charles Babbage / History of Computers: hardware, software, internet… // http://history-computer.com/Babbage/DifferentialEngine.html
- ↑ Howe J. (April 1840). “Manufacture of Pins”. American Journal of Science and Arts. 38 (1): Appendix, p. 3 // https://archive.org/stream/mobot31753002152160#page/n225/mode/2up/search/howe
- ↑ Campbell-Kelly M., Aspray W., Ensmenger N., Yost J. R. (2013). Computer: A History of the Information Machine. Avalon Publishing // https://books.google.ru/books?id=0MZVDgAAQBAJ
- ↑ Babbage C., Morrision P., Morrison E. (2013). On the Principles and Development of the Calculator and Other Seminal Writings. Dover Publications // https://books.google.ru/books?id=FTXyAAAAQBAJ
- ↑ Dalakov G. The Differential Engine of Charles Babbage / History of Computers: hardware, software, internet… // http://history-computer.com/Babbage/DifferentialEngine.html