Перейти к содержанию

4.2.3 Первые математические модели нейрона - Хорвег, Вейс и Лапик

Материал из Охота на электроовец: Большая Книга Искусственного Интеллекта

Итак, первые шаги в изучении электрической активности нервной системы были сделаны. Однако для того, чтобы приблизиться к возможности создания устройства, симулирующего работу мозга, нужно было идти дальше. И важной задачей, стоявшей перед исследователями, было изучение физических характеристик отдельных строительных кирпичиков мозга — нейронов и их отростков — аксонов и дендритов. Нервные волокна, пронизывающие тело человека и других животных, как раз и есть не что иное, как длинные отростки нейронов, покрытые глиальными оболочками.

Нейроглия, или просто глия (от др.-греч. γλία — клей), — это совокупность вспомогательных клеток нервной ткани, составляющих около 40% объёма центральной нервной системы. Глия состоит из различных типов клеток, выполняющих различные функции. Например, олигодендроциты формируют оболочки, окружающие тела нейронов, и выполняют изолирующую и опорную функции. Эти оболочки и называют глиальными.

Ещё со времён Гальвани было известно, что нервы возбуждаются под воздействием электричества. Но каковы должны быть параметры этого воздействия? Как успех стимуляции нерва зависит от силы и продолжительности импульса электрического тока и какие биофизические процессы лежат в основе этой зависимости?

В 1840-е гг. этими вопросами задался отец-основатель электрофизиологии Эмиль Дюбуа-Реймон. Отталкиваясь от результатов экспериментов, он пришёл к выводу, что электрический ток оказывает возбуждающее действие на нерв или мышцу только при изменении его силы. Согласно теории Дюбуа-Реймона, постоянный ток способен возбуждать нерв только в начале и в конце своего импульса, а не в средней части импульса, когда сила тока не меняется. Если это так, то пороговая сила (т. е. минимальная сила тока, достаточная для возбуждения нерва) должна быть полностью независима от длительности импульса. Ни абсолютное значение силы тока, ни количество электричества, переносимого по нерву, не играют особой роли, важна только величина перепада в силе тока. Дюбуа-Реймон опубликовал свои выводы в работе под названием «Исследование животного электричества» (Untersuchungen über tierische Elektrizität)[1], увидевшей свет в 1848 г.

Авторитет Дюбуа-Реймона во второй половине XIX в. был столь велик, что даже в случаях, когда результаты опытов входили в явное противоречие с его теорией, получившей известность как «основной закон возбуждения», другие электрофизиологи предпочитали не подвергать её сомнению. В течение десятилетий исследователи прилагали все возможные усилия, чтобы согласовать с нею новые экспериментальные данные[2].

Например, немецкий физиолог Адольф Фик в ходе экспериментов обнаружил, что длительность импульса тока является важным фактором возбуждения. Фик писал, что при заданном уровне силы тока он должен поддерживаться в течение определённого времени, чтобы произвести эффект[3]. Он также заметил, что некоторые мышцы беспозвоночных остаются в состоянии устойчивого сокращения, пока поддерживается ток (без каких-либо изменений в его силе). Существование таких устойчивых реакций мышцы прямо противоречит фундаментальному закону Дюбуа-Реймона. Казалось бы, этих результатов было достаточно, чтобы подвергнуть общепринятую теорию пересмотру. Вместо этого Фик резюмирует: «Принципиально новая формулировка закона мышечного возбуждения пока что не рассматривается». Примерно так же поступили Иоганн Крис[4] и Эдуард Пфлюгер[5].

Однако факты — упрямая вещь, и по мере накопления экспериментальных данных становилось всё труднее и труднее мириться с их несоответствием теории. Первым, кто открыто бросил вызов общепризнанной доктрине, стал учёный из Утрехта Ян Хорвег[6].

В своих многочисленных опытах Хорвег использовал для стимуляции нервов разряды лабораторных электрических конденсаторов Гефа с переключаемой ёмкостью от 1 до 1000 нФ. Эксперименты проводились на теле человека. В статье не указывается, на какую именно часть тела накладывались электроды, но, по всей видимости, это была рука. Для зарядки конденсаторов применялась батарея, содержавшая сорок элементов Лекланше[7] напряжением 1,5 В, что позволяло получить напряжение от 1,5 до 60 В[8].

Обобщив экспериментальные данные, учёный пришёл к выводу, что пороговое напряжение, необходимое для стимуляции нерва (успех стимуляции определялся по минимальному подёргиванию мышцы), описывается следующей эмпирической зависимостью:

V=aR+bC,

где R — сопротивление электрической цепи, C — ёмкость конденсатора, а a и b — некоторые константы.

Следовательно, напряжение, необходимое для стимуляции нерва, возрастает по мере уменьшения ёмкости. Заряд, необходимый для стимуляции, q = V × C, уменьшается с уменьшением C до конечного предельного значения b. Напротив, электрическая энергия 12CV2 достигает минимума при некоторой определённой величине ёмкости. Хорвег сделал следующий вывод: «Возбуждение нерва не является следствием изменения силы тока di/dt…; процесс возбуждения является только функцией силы тока i(t)». Это заявление, по всей видимости, стало первой решительной критикой закона Дюбуа-Реймона.

В 1892 г. Хорвег опубликовал статью[9] со своими смелыми выводами в журнале Pflügers Archiv für die gesamte Physiologie des Menschen und der Tiere (Архив Пфлюгера общей физиологии человека и животных).

Интересно, что подавляющее большинство физиологов во времена Хорвега не осознавало, что такое же по сути соотношение между ёмкостью и порогом возбуждения получил Алессандро Вольта ещё в 1803 г. Вольта ориентировался на ощущение покалывания, вызываемое электрическим током в его собственном пальце[10].

Необходимость радикального пересмотра общепринятых взглядов напугала научное сообщество, и многие известные учёные, такие, например, как Эдуард Пфлюгер, поспешили с порога отвергнуть[11] идею Хорвега, не слишком утруждая себя доказательствами. Прошло целых девять лет, пока в 1901 г. Жорж Вейс не установил[12] связь между электрическим зарядом, используемым для стимуляции, и её продолжительностью, продемонстрировав, что измерения Хорвега были правильными[13].

На основе экспериментальных данных Вейс предложил простую эмпирическую формулу, связывающую необходимые для стимуляции силу тока и продолжительность импульса:

i=at+b,

где i — сила тока, t — продолжительность импульса, a и b — некоторые константы[14].

В 1909 г. Луи Лапик переформулировал[15] результаты в знаменитую кривую силы — времени, носящую сегодня наименование кривой Хорвега — Вейса — Лапика и являющуюся одним из фундаментальных принципов нейронной стимуляции[16].

Рис. 79. Кривая Хорвега — Вейса — Лапика

(зависимость между силой тока и временем его действия)

Исследования и жизнь Лапика заслуживают подробного обзора.

Он родился в городе Эпинале в 1866 г. Его отец был ветеринарным врачом и поощрял страсть сына к естествознанию. После окончания местного колледжа юноша поступил на факультет естественных наук Парижского университета, который окончил в 1886 г., а затем продолжил обучение на медицинском факультете. То, что Лапик проявлял активный интерес к физике и химии, в те дни было весьма необычно для медицинских кругов. Поэтому знаменитый врач Жермен Се поручил ему организовать небольшую химическую лабораторию в больнице «Божий приют» [Hôtel Dieu, Отель-Дьё], где Лапик занялся исследованием циркуляции железа в организме позвоночных. Результаты исследований были представлены в диссертации на соискание степени доктора наук, успешно защищённой в 1897 г.

Экспериментальная работа молодого учёного в области химии и физиологии осуществлялась с перерывами на другие исследования. Например, как-то вдова сахарного магната мадам Лебоди, недовольная разгульным образом жизни своего сына Макса, решила отправить его в научную экспедицию на яхте «Семирамида» (Semiramis) с группой увлечённых молодых учёных, которые могли бы вдохновить сына на изменение образа жизни[17]. Несмотря на то что её сын так и не захотел[18] взойти на борт яхты, экспедиция всё же состоялась, и в путешествии 1893 г. Лапик по поручению Министерства общественного образования занимался изучением различных групп коренного населения островов Индийского океана. Спустя несколько лет он осуществил и вторую миссию в Индию от имени того же министерства в целях изучения дравидийского населения юга[19].

Во времена печально известного дела Дрейфуса Лапик и его друзья становятся на сторону несправедливо осуждённого офицера и решительно выступают против шовинистических и антисемитских настроений в обществе[20], [21].

В 1899 г. Лапик стал доцентом в Сорбонне, а с 1902 г. занялся изучением физиологии нервной системы[22].

Лабораторные исследования в области электрофизиологии начала XX в. весьма поучительны — в отсутствие сложного технического арсенала, доступного современной науке, учёные были вынуждены полагаться на собственную инженерную смекалку.

В своём первом исследовании[23], [24] 1907 г. Лапик представляет модель нерва, построенную на простой конденсаторной схеме, которую он сравнивает с данными, полученными при стимуляции нерва лягушки.

Поскольку отдельные нейроны было трудно выделить, Лапик стимулировал нервные волокна внеклеточно. Обычно он использовал седалищный нерв лягушки, который возбуждает мышцы ног.

В качестве стимула Лапик использовал короткий электрический импульс, который подавался через два электрода, разработанных и изготовленных специально для этой цели. В идеале в экспериментах по стимуляции можно было бы использовать импульсы тока, но подходящие источники тока создать было непросто. Вместо этого Лапик использовал источник напряжения — батарею. Регулировка напряжения осуществлялась при помощи делителя напряжения, представлявшего собой длинный провод с ползунком, похожий на современный потенциометр. Кроме того, чтобы обеспечить практически неизменную силу тока во время стимуляции, Лапик поместил в цепь последовательно с электродом мощный резистор.

Получить точные импульсы длительностью всего несколько миллисекунд тоже было непросто, изобретённый несколько ранее инструмент для этого был назван реотомом (rheotome, буквально «резак для тока»). Существовало множество оригинальных конструкций реотомов, например использующих маятники или вращающиеся диски. Лапик, вслед за Вейсом, использовал более экзотический, а именно баллистический реотом. Это устройство состояло из пистолета с капсюльным замком, пуля которого сначала разрывала первую перемычку, создавая ток в стимулирующей цепи, затем разрывала на своём пути вторую перемычку, прерывая контакт (Лапик жаловался на неприятный запах от выстрела; Вейс был лишён этого неудобства, так как использовал пневматическую винтовку, приводимую в действие баллоном с жидкой углекислотой[25]). Изменяя расстояние между проводами, Лапик мог точно настраивать длительность импульса. Для каждого варианта его длительности учёный варьировал напряжение, чтобы определить величину, необходимую для достижения порога раздражения. Мы точно не знаем, как именно определялось достижение порога, но, по всей видимости, экспериментатор просто наблюдал, была ли стимуляция достаточной для того, чтобы заставить ногу лягушки двигаться.

Модель Лапика стала основой для будущих моделей клеточной мембраны нейрона.

Лапик начинает свою статью 1907 г. с утверждения, что нервные мембраны являются не чем иным, как поляризуемыми полупроницаемыми мембранами. Поляризуемые мембраны в первом приближении могут быть смоделированы при помощи конденсатора с утечкой. Лапик сравнивает полученные данные с предсказаниями модели, предложенной Вейсом, и показывает, что модель Вейса с постоянной (независимой от напряжения) утечкой предсказывает прямую линию на графике зависимости порога возбуждения от произведения напряжения на длительность импульса, в то время как расположение точек лучше описывается выпуклой кривой, соответствующей альтернативному уравнению, предложенному Лапиком.

Любопытно, что уравнение Лапика также не слишком точно описывает данные. Учёного это, однако, не смущает. Он пишет, что, разумеется, существует некоторая погрешность. Действительно, в этом нет ничего удивительного, учитывая, что нервный пучок стимулируется внеклеточно при помощи весьма примитивного оборудования.

Темой дальнейших исследований Лапика стала связь между параметрами мембраны и возбудимостью. В 1909 г. он вводит в оборот понятия «реобаза» и «хронаксия»: реобазой называют минимальную силу тока, вызывающую возбуждение мышечной либо нервной ткани при неограниченном времени воздействия, а хронаксией — минимальное время, требуемое для возбуждения мышечной либо нервной ткани постоянным электрическим током силой удвоенной реобазы. В формуле Вейса константа b представляет собой реобазу, а отношение b соответствует хронаксии. Концепция хронаксии иногда используется и в наши дни при разработке кардио- и миостимуляторов[26].

Фактически хронаксия является выражением функциональной скорости исследуемой ткани: медленные мышцы и нервы характеризуются длинной хронаксией, а быстрые мышцы и нервы — короткой. Благодаря измерениям хронаксии удалось численно оценить эффекты разных воздействий на нервную систему (изменение температуры, приём различных лекарственных средств и т. п.), а измерение хронаксии двигательных нервов позволяет количественно оценивать развитие дегенеративных или регенеративных процессов в тканях, а также раскрыть особенности движения человеческого тела.

Работа 1907 г. привела Лапика к ряду теоретических рассуждений. Он постулировал, что активация цепочки нервных клеток зависит от последовательной электрической стимуляции каждой клетки импульсом (потенциалом действия[27]) предыдущей.

Лапик предложил теорию нервных процессов, которая напоминала подстройку или резонанс между колебательными радиоконтурами. Теория показывала, что передача возбуждения между двумя нервными клетками происходила наилучшим образом, когда клетки имели одну и ту же хронаксию. Когда вторая клетка имела более длинную хронаксию, её возбуждение требовало многократной активации первой. В этом случае числовые значения, полученные в соответствии с моделью Лапика, являются адекватными независимо от того, производится ли стимуляция электрически или химически (например, под воздействием нейромедиатора[28], такого как ацетилхолин)[29].

Лапик считал хронаксию важной величиной, характеризующей физиологические свойства возбудимой ткани. Он собрал значения хронаксии, измеренные на различных тканях в разнообразных экспериментальных условиях. Лапик изучал блокирование передачи нервных импульсов при помощи яда кураре, рассматривая воздействие яда как изменение хронаксии мышцы. Теория французского учёного произвела большое впечатление на многих исследователей, которые пытались на её основе интерпретировать сложные явления в центральной нервной системе[30].

Появление новых методов и технологий, позволяющих регистрировать реакцию нервных клеток, позволило подтвердить некоторые предсказания теории. Например, в 1913 г. Лапик и Рене Лежандр показали, что хронаксия моторных волокон, или аксонов, обратно пропорциональна их диаметру, что было продемонстрировано в катодно-лучевых осциллографических записях, полученных Эрлангером и Гассером в 1928 г.[31]

Но даже на пике популярности измерений хронаксии появилось несколько работ, поставивших важность таковых под сомнение. Американский физиолог Хэллоуэлл Дэвис, например, указал[32], что хронаксия мышцы, измеренная с помощью крупных электродов, намного больше, чем хронаксия, измеренная с помощью небольшого стимулирующего катода. В 1930-е гг. кембриджский физиолог Уильям Раштон показал[33] зависимость хронаксии от расположения электродов, используемых для стимуляции[34]. Причины этого стали понятны, когда исследователям удалось разобраться в роли, которую при передаче нервных импульсов играют оболочки нервных волокон, но об этих открытиях мы поговорим немного позже.

Стоит поговорить о незаурядной личности Лапика. Спектр физиологических проблем, интересовавших учёного, был весьма широк — физиология питания, термогенез, коэффициент цефализации, физиология морских водорослей, защита от отравляющих веществ, механизмы действия ядов. Лапик занимал престижные преподавательские должности: он был профессором общей физиологии в Музее естествознания с 1911 г. и в Сорбонне с 1919 по 1936 г.[35] В 1911 г. Лапик участвовал в создании Французского института антропологии — научного общества, объединяющего учёных из разных областей науки для обмена знаниями по антропологии.

Луи Лапик также являлся одним из участников «научной колонии» на мысе Аркуэст в Плубаланеке, также известной под названием «Сорбонна-Пляж». С 1900 г. группа интеллектуалов — включавшая среди прочих историка Шарля Сеньобоса, физиков Жана Перрена, Пьера Оже, Марию Склодовскую-Кюри, Пьера Кюри, Ирен и Фредерика Жолио-Кюри, а также математика Эмиля Бореля — во время совместного пляжного отдыха занималась обсуждением актуальных вопросов науки и общественной жизни. Будучи страстным республиканцем, Лапик, как и многие его близкие друзья, всю жизнь боролся против милитаризма, за секуляризм и социалистические идеи.

Лапик был отличным моряком. Каждое лето он выводил двадцатитонную яхту, носившую имя «Аксон» (Axone), в сложные воды у побережья Северной Бретани. Члены его лаборатории часто также присутствовали на борту, сочетая изучение физиологии с мореплаванием.

В 1943 г. увидела свет книга Лапика «Нервная машина» (La machine nerveuse)[36], подводящая итог многолетних исследований учёного и написанная им во время заключения в тюрьме гестапо (в октябре 1941 г. он вместе с Эмилем Борелем и двумя другими членами Французской академии наук был арестован по обвинению в ведении антинемецкой пропаганды среди студентов[37]). Этот факт из биографии учёного — примечательное дополнение к его портрету.

В 1902 г. Лапик женился на своей университетской ученице Марселле де Эредиа. В 1903 г. Марселла защитила докторскую диссертацию, посвящённую изучению нервных импульсов. У пары не было собственных детей, и они усыновили племянника Лапика — Шарля, рано ставшего сиротой[38]. Шарль получил образование инженера, но в 1940 г. оставил инженерную деятельность ради карьеры художника.

Лапик и его жена тесно сотрудничали в течение почти пятидесяти лет в лаборатории физиологии Сорбонны, опубликовав более восьмидесяти статей. В «Нервной машине» учёный пишет о том, что все предыдущие годы жена была равным партнёром в его исследованиях. После смерти Лапика в 1952 г. Марселла заняла место своего мужа на посту главы лаборатории[39].

Рис. 80. Луи и Марселла Лапик в лаборатории

В рассуждениях о важности результатов работы Лапика для вычислительной нейробиологии нередко можно столкнуться[40], [41], [42] с утверждением, что он является создателем и исследователем первой модели нейрона, носящей название «интегрировать-и-сработать» [integrate-and-fire]. В соответствии с этой моделью алгоритм работы нейрона можно описать следующим образом: когда на вход нейрона подаётся ток, разность потенциалов (напряжение) на мембране возрастает со временем, пока не достигает некоторого порогового значения, при котором происходит скачкообразное изменение потенциала на выходе, напряжение сбрасывается до остаточного потенциала, после чего процесс может повторяться снова и снова.

В действительности связь между возбуждением нерва и образованием нервного импульса во времена Лапика была ещё неясной, и учёный не выдвигал гипотез ни об этом, ни о том, как мембрана возвращается в исходное состояние после выдачи импульса. Это поднимает вопрос о том, кто в действительности предложил модель «интегрировать-и-сработать». Достоверного ответа на него нет. Зато можно с уверенностью сказать, что первые работы, в которых описана модель «интегрировать-и-сработать» в современном виде, относятся к 1960-м годам (хотя сходные идеи звучали и в более ранних статьях). Название для неё предложил Брюс Найт, а одним из первых исследователей стал Ричард Стейн[43].

  1. du Bois-Reymond E. (1848). Untersuchungen über tierische Elektrizität / Von den allgemeinen Gesetzen der Nervenerregung durch den elektrischen Strom (Band 1, Chapter 2.2). G. Reimer, Berlin // https://archive.org/details/bub_gb_AtkPAAAAQAAJ/page/n6
  2. Tasaki I. (2012). Physiology and Electrochemistry of Nerve Fibers. Elsevier // https://books.google.ru/books?id=3ttzcDBIwRIC
  3. Fick A. (1863). Beiträge zur vergleichenden Physiologie der irritabelen Substanzen: Mit in den Text eingedruckten Holzstichen. Vieweg // https://books.google.ru/books?id=zCFCAAAAcAAJ
  4. von Kries J. (1882). Ueber die Erregung des motorischen Nerven durch Wechselströme / Berichte über die Verhandlungen der Naturforschenden Gesellschaft zu Freiburg im Breisgau, Vol. 8, Iss. 2, pp. 170—204 // https://www.biodiversitylibrary.org/item/42625#page/198/mode/1up
  5. Pflüger E. (1859). Untersuchungen über die Physiologie des Electrotonus. August Hirschwald.
  6. Tasaki I. (2012). Physiology and Electrochemistry of Nerve Fibers. Elsevier // https://books.google.ru/books?id=3ttzcDBIwRIC
  7. * Элемент Лекланше — марганцево-цинковый элемент питания (источник тока), катод которого изготовлен из смеси графита с диоксидом марганца (MnO2), анод — из металлического цинка, а в роли электролита выступает раствор хлорида аммония NH4Cl.
  8. Горбунов Б. Б., Востриков В. А., Нестеренко И. В., Телышев Д. В. (2018). История открытия закона Гоорвега-Вейса-Лапика / Медицинская техника. № 5 (311) // http://www.defibrillation.ru/download/Medicinskaya_texnika,2018,5,48-50.pdf
  9. Hoorweg J. L. (1892). Ueber die elektrische Nervenerregung / Archiv für die gesame Physiologie des Menschen und der Tiere, Vol. 52, Iss. 3—4, pp. 87—108 // https://doi.org/10.1007/BF01661875
  10. Tasaki I. (2012). Physiology and Electrochemistry of Nerve Fibers. Elsevier // https://books.google.ru/books?id=3ttzcDBIwRIC
  11. Pflüger E. (1893). J. L. Hoorweg und die electrische Nervenerregung / Archiv für die gesame Physiologie des Menschen und der Tiere, Vol. 53, Iss. 11—12, p. 616
  12. Weiss G. (1901). Sur la possibilité de rendre comparables entre eux les appareils servant à l’excitation électricque / Archives Italiennes de Biologie, Vol. 35, Iss. 1, pp. 413—446 // http://www.architalbiol.org/aib/article/view/35413
  13. van Dongen M., Serdijn W. (2016). Design of Efficient and Safe Neural Stimulators: A Multidisciplinary Approach. Analog Circuits and Signal Processing. Springer International Publishing // https://books.google.ru/books?id=UGahCwAAQBAJ
  14. Tasaki I. (2012). Physiology and Electrochemistry of Nerve Fibers. Elsevier // https://books.google.ru/books?id=3ttzcDBIwRIC
  15. Lapicque L. (1909). Définition expérimentale de l'excitabilité / Comptes rendus des séances de la Société de biologie, 67, 280—283 // https://gallica.bnf.fr/ark:/12148/bpt6k6541404v/f288.image
  16. Brunel N., van Rossum M. C. W. (2007). Lapicque’s 1907 paper: from frogs to integrate-and-fire / Biological Cybernetics, Vol. 97, pp. 337—339 // https://doi.org/10.1007/s00422-007-0190-0
  17. Monnier A. M. (2008). Lapicque, Louis / Complete Dictionary of Scientific Biography // https://www.encyclopedia.com/science/dictionaries-thesauruses-pictures-and-press-releases/lapicque-louis
  18. M. Max Lebaudy's yacht: A Mother's Neat Little Scheme Fails Of Its Aim, but Benefits Science / Los Angeles Herald, Volume 41, Number 25, 5 November 1893 // https://cdnc.ucr.edu/?a=d&d=LAH18931105&e=-------en--20--1--txt-txIN--------1
  19. Monnier A. M. (2008). Lapicque, Louis / Complete Dictionary of Scientific Biography // https://www.encyclopedia.com/science/dictionaries-thesauruses-pictures-and-press-releases/lapicque-louis
  20. Pinault M. (2000). Frédéric Joliot-Curie. O. Jacob // https://books.google.ru/books?id=ZQF1O1DLvHsC
  21. Duclert V. (1998). La Ligue de “l’epoque heroique”: la politique des savants / Le Mouvement Social, Vol. 183 (27) // https://doi:10.2307/3779613
  22. Monnier A. M. (2008). Lapicque, Louis / Complete Dictionary of Scientific Biography // https://www.encyclopedia.com/science/dictionaries-thesauruses-pictures-and-press-releases/lapicque-louis
  23. Lapicque L. (1907). Recherches quantitatives sur l’excitation electrique des nerfs traitee comme une polarization / Journal of Physiol Pathol Générale, 9, 620-635 // https://fr.wikisource.org/wiki/Recherches_quantitatives_sur_l%27excitation_%C3%A9lectrique_des_nerfs_trait%C3%A9e_comme_une_polarisation
  24. Lapicque L. (2007). Quantitative investigations of electrical nerve excitation treated as polarization. Translated by: Nicolas Brunel, Mark C. W. van Rossum / Biological Cybernetics, 2007 // https://core.ac.uk/download/pdf/21172797.pdf
  25. Горбунов Б. Б., Востриков В. А., Нестеренко И. В., Телышев Д. В. (2018). История открытия закона Гоорвега-Вейса-Лапика / Медицинская техника, октябрь // https://www.researchgate.net/publication/328579029_The_History_of_the_Discovery_of_the_Hoorweg-Weiss-Lapicque_Law
  26. Brunel N., van Rossum M. C. W. (2007). Lapicque’s 1907 paper: from frogs to integrate-and-fire / Biological Cybernetics, Vol. 97, pp. 337—339 // https://doi.org/10.1007/s00422-007-0190-0
  27. * Потенциалом действия называют волну возбуждения, перемещающуюся по мембране живой клетки в виде кратковременного изменения мембранного потенциала (т. е. разницы в электрическом потенциале между зарядами внутренней и внешней стороны мембраны) на небольшом участке нейрона или кардиомиоцита. Далее по тексту книги мы часто для простоты будем использовать термин «импульс», хотя среди нейрофизиологов принято использовать более строгий термин «потенциал действия».
  28. ** Нейромедиаторами называют биологически активные химические вещества, посредством которых осуществляется передача электрохимического импульса через синаптическое пространство между нейронами.
  29. Monnier A. M. (2008). Lapicque, Louis / Complete Dictionary of Scientific Biography // https://www.encyclopedia.com/science/dictionaries-thesauruses-pictures-and-press-releases/lapicque-louis
  30. Tasaki I. (2012). Physiology and Electrochemistry of Nerve Fibers. Elsevier // https://books.google.ru/books?id=3ttzcDBIwRIC
  31. Monnier A. M. (2008). Lapicque, Louis / Complete Dictionary of Scientific Biography // https://www.encyclopedia.com/science/dictionaries-thesauruses-pictures-and-press-releases/lapicque-louis
  32. Davis H. (1923). The relationship of the “Chronaxie” of muscle to the size of the stimulating electrode / Journal of Physiology, Vol. 57, pp. 81—82.
  33. Rushton W. A. H. (1935). The time factor in electrical excitation / Biological Reviews, Vol. 10, Iss. 1, pp. 1—17 // https://doi.org/10.1111/j.1469-185X.1935.tb00474.x
  34. Tasaki I. (2012). Physiology and Electrochemistry of Nerve Fibers. Elsevier // https://books.google.ru/books?id=3ttzcDBIwRIC
  35. Monnier A. M. (2008). Lapicque, Louis / Complete Dictionary of Scientific Biography // https://www.encyclopedia.com/science/dictionaries-thesauruses-pictures-and-press-releases/lapicque-louis
  36. Lapicque L., Gaultier P. (1943). La machine nerveuse. (Flammarion) réédition numérique FeniXX // https://books.google.ru/books?id=r2qJDwAAQBAJ
  37. Mazliak L., Shafer G. (2011). What Does the Arrest and Release of Emile Borel and His Colleagues in 1941 Tell Us about the German Occupation of France? / Science in Context, Vol. 24, Iss. 4, pp. 587—623, December 2011 // https://doi.org/10.1017/S0269889711000238
  38. Peltier C. Louis Édouard Lapicque (1866–1952) // http://www.charleslapicque.fr/a-propos-de/biographie/biographie-detaillee/resources/pdf/Louis_Lapicque.pdf
  39. Lykknes A., Opitz D. L., Van Tiggelen B. (2012). For Better or For Worse? Collaborative Couples in the Sciences. Science Networks. Historical Studies. Springer Basel // https://books.google.ru/books?id=yR0fPFFbKqsC
  40. Abbott L. F. (1997). Lapicque’s introduction of the integrate-and-fire model neuron / Brain Research Bulletin, Vol. 50, Iss. 5—6, November—December 1999, pp. 303—304 // https://doi.org/10.1016/S0361-9230(99)00161-6
  41. Liang P., Wu S., Gu F. (2015). An Introduction to Neural Information Processing. Springer Netherlands // https://books.google.ru/books?id=XFZECwAAQBAJ
  42. Calvo P., Gomila T. (2008). Handbook of Cognitive Science: An Embodied Approach. Elsevier Science // https://books.google.ru/books?id=jxnhqHuo3gQC
  43. Brunel N., van Rossum M. C. W. (2007). Lapicque’s 1907 paper: from frogs to integrate-and-fire / Biological Cybernetics, Vol. 97, pp. 337—339 // https://doi.org/10.1007/s00422-007-0190-0
Loading comments...