Перейти к содержанию

4.2.4 Принцип всё или ничего - Лукас, Эдриан, Като

Материал из Охота на электроовец: Большая Книга Искусственного Интеллекта

Рассказав о вкладе Луи Лапика в моделирование нервной деятельности, нельзя не упомянуть работы двух других замечательных нейрофизиологов — Кита Лукаса и Эдгара Эдриана.

Лукас, сын управляющего директора британской Telegraph Construction and Maintenance Company, любил, как и его отец, работать с механическими и электрическими устройствами. Во время учёбы в кембриджском Тринити-колледже Лукас заинтересовался физиологией — эта дисциплина остро нуждалась в создании чувствительных измерительных инструментов. В 1932 г. ученик Лукаса Эдгар Эдриан, ставший к тому времени нобелевским лауреатом, заметил, что «история электрофизиологии определялась историей приборов для регистрации электрических сигналов»[1].

Основной сферой интересов Лукаса в области физиологии стала работа мышц. Ему было интересно: почему мышца может сокращаться только частично и как нервная система управляет степенью её сокращения? На этот счёт существовало две гипотезы: или все мышечные волокна могут подвергаться частичному сокращению, или же каждое мышечное волокно может сокращаться только полностью, а при частичном сокращении всей мышцы сокращается лишь часть волокон. Лукас надеялся определить, какая из этих гипотез верна, проводя эксперименты на лягушках. Его логика была довольно проста: если верна вторая гипотеза (сокращается часть волокон), то сокращение будет состоять из конечного числа дискретных шагов, в противном случае функция сокращения будет гладкой[2].

Эксперименты Лукаса с кожной мышцей спины (M. cutaneus trunci) лягушки свидетельствовали в пользу «дискретной гипотезы» (её обычно называют «всё или ничего» [all or nothing]), что согласовывалось с результатами более ранних опытов[3], [4] гарвардского исследователя Генри Боудича на сердечных мышцах. Лукас опубликовал[5] свои первые результаты в 1905 г. Затем он продолжил опыты, стимулируя уже нервы, управляющие мышцей. Во второй статье, увидевшей свет в 1909 г., он писал: «В каждом мышечном волокне сокращение всегда максимально, независимо от силы стимула, который возбуждает нервное волокно». Последние эксперименты привели Лукаса к вопросу о физиологии нервной деятельности, а именно: можно ли быть уверенным в том, что аксоны также действуют в соответствии с принципом «всё или ничего»?[6], [7] Однако, чтобы дать ответ на этот вопрос, нужны были более чувствительные регистрирующие устройства. Лукас отказался от идеи использования струнного гальванометра, вместо этого он внёс ряд усовершенствований в конструкцию капиллярного электрометра Липпмана с целью повысить чувствительность прибора. С новым измерительным устройством он был готов к новой серии опытов, помощником в которых стал молодой Эдгар Эдриан.

Эдгар Эдриан родился в 1889 г. в богатой лондонской семье. Хотя изначально его привлекали греческий и латинский языки, а также авторы классической эпохи, к 1906 г. у юноши пробудился интерес к естественным наукам. Два года спустя он начал посещать занятия в кембриджском Тринити-колледже, где быстро приобрёл репутацию очень умного и чрезвычайно трудолюбивого студента. В 1911 г., получив учёную степень по физиологии, Эдриан начал работать в лаборатории Лукаса. Сначала — над экспериментом, показывающим, что стимулы, близкие друг к другу во времени, могут суммироваться. Затем Лукас попросил его попытаться определить, действует ли принцип «всё или ничего» для нервов. Хотя Лукасу и удалось усовершенствовать оборудование, но всё же в 1911 г. оно было недостаточно точным, поэтому Эдриан при поиске ответа на главный вопрос был вынужден полагаться на косвенный метод. Последний заключался в том, чтобы поместить сегмент изолированного нерва лягушки в камеру, наполненную парами алкоголя в концентрации, позволяющей ослабить нервный импульс, но не блокировать его полностью[8]. Метод не был изобретением Лукаса и Эдриана: впервые его применил, ещё в XIX в., немецкий медик Альфред Грюнхаген[9], а затем развил немецкий же физиолог Макс Ферворн, которому удалось показать, что величина стимуляции не влияет на способность нервного импульса преодолевать затронутую алкогольными парами зону[10].

Эдриан предположил, что если соблюдается принцип проводимости «всё или ничего», то импульс должен быстро восстановить свою силу после того, как покинет зону воздействия алкоголя. Чтобы проверить эту гипотезу, Эдриан решил расположить на некотором расстоянии от первой затронутой алкоголем зоны вторую и измерить, насколько сильной должна быть в ней концентрация паров алкоголя, чтобы полностью блокировать импульс. Выяснилось, что концентрация паров алкоголя во второй зоне для полной остановки импульса должна быть столь же высокой, как и их концентрация в первой зоне для остановки неослабленного импульса. Эдриан также обнаружил, что вывод Лукаса в отношении мышц выполняется и применительно к нервам: если уровень раздражителя достаточен, чтобы вызвать нервный импульс, то сила данного импульса не зависит от уровня раздражителя (от едва заметного до очень сильного).

Эдриан полагал, что для продолжения исследований ему следует получить медицинское образование, и в 1914 г. он начал клиническую подготовку в лондонском госпитале Святого Варфоломея. К сожалению, Первая мировая война нанесла непоправимый удар по совместным экспериментам учёных. В 1915 г. Эдриан после получения медицинской степени стал врачом и лечил солдат с поражением нервов, контузиями и истерическим параличом. Лукас же присоединился к исследовательскому коллективу Королевского авиационного завода в Фарнборо, где использовал свои инженерные навыки для разработки новых бомбовых прицелов и авиационных компасов. Но в 1916 г. в результате нелепой случайности жизнь Лукаса прервалась — во время испытания авиационного оборудования его самолёт столкнулся с другим над равниной Солсбери.

После потери наставника Эдриан взял на себя ответственность отредактировать и опубликовать незаконченную книгу Лукаса[11], [12] — «Распространение нервного импульса» (Conduction of the Nervous Impulse)[13], которая увидела свет в 1917 г. Эта работа подробно описывает эффекты, известные Лукасу и Эдриану: рефракторный период, суммирование нервных импульсов и принцип «всё или ничего». Безусловно, это были захватывающие достижения, но всё же оставалось чувство, что можно достичь гораздо большего — с помощью более чувствительных приборов.

Интересно, что человек, сумевший добиться существенного прогресса в этом направлении, в наши дни не так уж широко известен. Его звали Александр Форбс, и он происходил из богатой бостонской семьи — в «Википедии» вы легко найдёте множество статей, посвящённых его знаменитым родственникам. Мать Александра была дочерью поэта Ральфа Эмерсона, а отец — героем Гражданской войны и президентом телефонной компании Bell. Перед юным Александром было открыто множество дорог, и выбранная им привела его в Гарвард, где он занял главную позицию в футбольной команде университета. Занятия спортом подстегнули у Александра интерес к физиологии. В 1905 г. он получил степень магистра, а спустя ещё пять лет — доктора медицины. После этого Александр выбрал академическую карьеру и остался в стенах Гарварда уже в роли сотрудника факультета физиологии.

Большое впечатление на Форбса оказали исследования Чарльза Шеррингтона, занимавшегося исследованием синаптических связей. Именно Шеррингтон в 1897 г. ввёл в оборот и сам термин «синапс», предложенный специалистом по Античности Артуром Верралом[14].

Для того чтобы лучше изучить работу учёного, Форбс попросил отпуск и вместе с женой отправился на корабле в Великобританию.

Во время поездки он познакомился с работой физиологических лабораторий Кембриджа. Возвратиться в США Александр поначалу предполагал на жемчужине роскошных лайнеров — только что спущенном на воду «Титанике». Однако общение с Лукасом и Эдрианом так увлекло Форбса, что он отменил первоначальное бронирование билетов для себя и своей жены ради того, чтобы провести вместе со своими новыми знакомыми несколько экспериментов. Кто знает, какой была бы история нейрофизиологии, если бы Форбс всё-таки отправился в этот злополучный рейс?

Прибыв домой на другом известном корабле, «Лузитания», Форбс заполнил свою лабораторию оборудованием, подобным тому, которое использовали Лукас и Эдриан. Среди прочего он обзавёлся улучшенным капиллярным электрометром вдобавок к струнному гальванометру Эйнтховена, который уже был на его факультете. Используя знания, полученные у Шеррингтона, Лукаса и Эдриана, Форбс начал с изучения рефлексов у кошек.

Когда разразилась Первая мировая война, он поступил на службу во флот — его и раньше привлекало море, к тому же у Форбса была собственная яхта, на которой он регулярно плавал. На флоте он применил свои инженерные познания для работы с электрической техникой. Именно здесь он впервые столкнулся с электронными лампами (тогда их называли «аудионами»), позволявшими усиливать радиосигналы с минимумом искажений. После окончания войны Форбс использовал эти лампы, чтобы сконструировать новый усилитель для физиологических исследований. В 1919 г., когда он подключил свой термоэмиссионный усилитель к цепи, включавшей нерв и струнный гальванометр Эйнтховена, он обнаружил, что может усилить едва уловимый нервный импульс в целых пятьдесят раз. В течение нескольких следующих лет Форбс подробно описал свой усилитель и провёл с его помощью несколько исследований. Большая часть из них подтвердила результаты других исследователей. Хотя сам Форбс и не сделал каких-либо прорывных открытий в области физиологии, но он смог совершить в этой области настоящую технологическую революцию, важность которой была немедленно признана другими нейрофизиологами.

Эстафету у Форбса приняли «аксонологи» [axonologists] (как называл их Форбс) Герберт Гассер и Джозеф Эрлангер из Университета Вашингтона в Сент-Луисе (Washington University in St. Louis, WUSTL). Гассер вместе с талантливым конструктором Гарри Ньюкомером сконструировал многокаскадный усилитель. Это устройство позволяло передавать выходной сигнал одного лампового усилителя на вход следующего усилителя, что сделало возможным ещё большее усиление слабого входного сигнала. Строго говоря, Гассера, Эрлангера и Ньюкомера нельзя считать прямыми «наследниками» Форбса, поскольку собственные эксперименты по усилению нервных импульсов при помощи электронных ламп они начали ещё до вступления США в Первую мировую войну, однако Форбсу удалось первым опубликовать свои результаты[15], [16].

Ещё одним важным шагом вперёд стало появление чувствительного катодного осциллографа, созданного инженерами компании Western Electric. Хотя инженеры компании и оказывали некоторую помощь учёным в работе над многокаскадным усилителем, Western Electric отказалась продать исследователям экспериментальную катодную лампу, лежащую в основе устройства, поэтому Гассеру и его коллегам пришлось самостоятельно смастерить её аналог в своей лаборатории. Подключив осциллограф к усилителю, Гассер и Эрлангер впервые в истории смогли получить временну́ю развёртку отдельных нервных импульсов.

Этот технологический прорыв принёс учёным удивительное открытие: оказалось, что то, что прежде считалось отдельным потенциалом действия, на деле представляло собой совокупность импульсов от различных типов аксонов, сплетённых вместе в единое нервное волокно. Исследования различных нервов показали, что нервные импульсы быстрее распространяются вдоль толстых аксонов, чем вдоль тонких. Это стало блестящим подтверждением гипотезы, предложенной в 1907 г. шведским физиологом Густавом Гётлином. В конце 1920-х гг. Эрлангеру и Гассеру удалось показать, что слабо концентрированный раствор местного анестетика, обеспечивающий эффективную блокаду тонких нервных волокон, неспособен блокировать распространение нервного импульса в толстых волокнах[17], [18]. Интересно, что в исследованиях Лукаса и Эдриана эффективность блокады нервного импульса парами алкоголя зависела от протяжённости участка блокады, что на первый взгляд выглядело весьма логично. Однако, когда этот результат попыталась произвести группа японских исследователей во главе с Гэнъити Като, выяснилось, что результаты экспериментов не согласуются с наблюдениями Эдриана.

Като не смог подтвердить зависимость времени достижения полной блокады нервной проводимости от длины участка нерва, подвергающегося обработке парами алкоголя. Эксперимент Эдриана был повторён с большой точностью с использованием различных анестетиков (алкоголя, хлороформа, уретана, хлоралгидрата, кокаина): время достижения блокады (определяемое путём регистрации сокращений мышц или измерением амплитуды электрического сигнала на участках нерва, расположенных после затронутой алкоголем зоны) было одинаковым вне зависимости от протяжённости данной зоны. Като предположил, что ошибка в опытах Эдриана была связана с тем, что при малой длине затронутого парами алкоголя участка не удавалось добиться той же концентрации паров, как в случае более длинного участка[19]. Этот результат вызвал нешуточную полемику в среде нейрофизиологов. Выводы Лукаса и Эдриана активно поддерживал немецкий физиолог Макс Ферворн, авторитет которого был чрезвычайно высок. Именно с его именем ассоциировалась в первую очередь «теория убывания» [decrement theory], в основе которой лежало предположение о том, что сила нервного импульса убывает постепенно по мере прохождения участка блокады. Като же стал основателем альтернативной парадигмы, получившей название «теория неубывания» [decrementless theory]. Драматизма этой полемике добавила позиция учителя Като — Хидэцурумару Исикавы, который был учеником Ферворна. Като впервые представил свои результаты на собрании Японского физиологического общества, состоявшемся в Фукуоке в апреле 1923 г. Вот как сам Като описывает реакцию учителя на свой доклад:

Когда я уже собирался ликуя сойти с трибуны после прочтения своей статьи, он, покраснев от ярости, встал и сказал мне, что «подвергать критике профессора Ферворна так, как это сделано в таком незрелом исследовании, как ваше, — акт высокомерия. Верите ли вы, что такие обширные экспериментальные результаты, как у профессора Ферворна и доктора Лукаса, можно объяснить при помощи такой дрянной идеи, как теория неубывания? Дайте мне два часа, и я разнесу теорию Кейо (университета, где работал Като. — С. М.) на куски! Что скажете?» Гром среди ясного неба! Он был искренним последователем этих двух учёных. Несколько лет он учился у Ферворна. Я, побледнев, замер в углу сцены, не проронив в ответ ни слова из тех возражений, которые можно было бы представить в ответ на его яростный упрёк. Опустив глаза, я вернулся на своё место. В моей жизни не было ничего более шокирующего. Я не мог понять, почему профессор Исикава так покраснел от гнева, потому что был твёрдо уверен, что он меня похвалит. Я был достаточно глуп и не знал, что нельзя оценивать людей своей меркой.

Несмотря на столь тяжёлый удар, Като опубликовал результаты в монографии «Теория неубывающего распространения» (The Theory of Decrementless Conduction), которая была завершена в 1924 г. Он разослал работу по ведущим университетам мира и в том же году получил подтверждение своей теории в опытах Форбса, который воспроизвёл опыты Като, используя нервы кошек. Чтобы окончательно убедить научный мир в своей правоте, Като и его коллеги решили представить полученные результаты на XII Международном конгрессе по физиологии, который должен был состояться в Стокгольме в 1926 г.

Надо сказать, что воплощение в жизнь этого плана было связано с нешуточными трудностями: Като и его коллеги ставили свои опыты на японских черепахах, которые могли и не перенести предстоящее многодневное путешествие по Транссибирской магистрали. Хищные черепахи признавали только живую пищу, что создавало учёным дополнительные проблемы. Советская Россия 1920-х гг. представлялась довольно опасным местом — по словам Като, «все железные дороги и станции были заняты рабочими и крестьянами». Впрочем, советские власти снабдили Като и его коллег специальной «защитной грамотой», так что учёным удалось без ущерба здоровью добраться до Стокгольма, чего, к сожалению, нельзя было сказать о черепахах — несмотря на все принятые меры предосторожности, животные не пережили путешествия.

К счастью для Като и его коллег (и к несчастью для лягушек), замену удалось найти на месте.

Вот как описывает сам Като ход экспериментов:

Доктор Фёлих (последователь Ферворна) был весь внимание и наблюдал за происходящим широко открытыми глазами. В наркотизирующей камере были натянуты два отрезка седалищных нервов (длиной 3,0 и 1,5 см), взятые с правой и левой стороны одной и той же лягушки из Голландии. Время угасания [нервных импульсов] предполагалось измерить в присутствии зрителей. Результаты были следующими: в более длинном отрезке проводимость была полностью приостановлена ​​спустя 24 минуты и 16 секунд, а в более коротком — спустя 24 минуты и 15 секунд, и хотя в случае последнего процесс занял на секунду меньше, но время было практически одинаковым. Как отмечалось позже, моё объявление о результатах эксперимента было слишком напряжённым, точнее — мой голос срывался на фальцет под влиянием переполняющего меня восторга. Меня не так сильно волновал второй эксперимент, потому что провал в нём был значительно менее вероятен. Как и ожидалось, два импульса, сильный и слабый, исчезли одновременно. Но оставался ещё третий эксперимент — по разрезанию. К этому моменту я в целом успокоился. По истечении времени угасания [нервных импульсов] в наркотизированной области в неё были даны два электрических стимула, сильный и слабый. Слабый стимул не вызывал мышечных сокращений, в отличие от сильного. До этого момента всё было так, как утверждал Ферворн. Сразу после этого наркотизированная область должна была быть разрезана в том месте, куда подавался электрический стимул. Это должно было показать, что сильный электрический стимул вызывает сокращение мышцы, в то время как разрез (механическое раздражение) не вызывает его. Когда доктор Утимура сразу после электрической стимуляции собрался выполнять разрез, из глубины зала раздался голос: «Отсюда не видно состояния мышц!» Действительно, многие наблюдатели хотели своими глазами увидеть, будет ли сокращаться мышца или нет. Это был доктор Бёйтендейк, профессор Университета Гронингена в Голландии, бывший ближе всего к столу, который предложил объявлять остальным, будет ли движение мышцы или нет. Доктор Утимура снова взял ножницы и поднёс их к нерву, чтобы разрезать его. Его рука дрожала; это могло оказать некоторое давление на нерв и привести к сокращению мышцы. У меня не хватило смелости наблюдать сам момент разреза. Шли секунды. Неожиданно прозвучало: «Keine Zuckung!!» [Нет сокращения!!] Это был голос профессора Бёйтендейка. Следом прозвучал другой возглас: «Revolution der Physiologie!» [Революция в физиологии!], автора которого я не смог определить. Учёные один за другим поздравляли меня и жали мне руку. Профессор Кремер из Берлина и профессор Ашер из Бернского университета похлопали меня по плечу и сказали: «Демонстрационные эксперименты обычно проходят не так хорошо, как это должно быть. Но сегодня они были необычайно успешны, просто превосходны». Здесь, в Японии, где я родился, ко мне никогда не относились с таким участием, едва не вызвавшим у меня на глазах невольные слёзы[20].

Когда в 1932 г. Эдгар Эдриан был удостоен (совместно с Чарльзом Шеррингтоном) Нобелевской премии за «открытия, касающиеся функций нейронов», в своей нобелевской речи он упомянул вклад Като в устранение первоначальных заблуждений[21]. В 1944 г. Нобелевскую премию получили и Гассер с Эрлангером — «за открытия, имеющие отношение к высокодифференцированным функциям отдельных нервных волокон»[22].

В то время как другие учёные развивали исследования Эдриана, сам он постепенно отошёл от изучения влияния анестетиков на распространение нервных сигналов, сосредоточившись на более общих вопросах, связанных с генерацией и распространением нервных импульсов. Например, ему впервые в истории науки удалось зарегистрировать электрическую активность отдельной клетки. Благодаря работам Эдриана мы узнали, что частотно-импульсная модуляция[23] — это способ, при помощи которого нервные клетки могут представлять информацию в виде электрических сигналов. Более того, термин «информация» в нейрофизиологическом контексте, по-видимому, впервые был использован именно Эдрианом — в 1928 г. он применил его для обозначения сообщения, связанного с электрическими нервными импульсами сенсорных волокон[24].

Интересно, что вклад Эдриана в развитие нейрофизиологии не ограничился его собственными исследованиями. Например, именно он привлёк внимание научной общественности к исследованиям Бергера. К 1933 г. немецкий учёный опубликовал семь из четырнадцати своих отчётов, и все они остались не замеченными коллегами и прессой. Когда Эдриан впервые познакомился с работами Бергера в 1934 г., он поначалу скептически отнёсся к этому исследованию и решил повторить эксперименты Бергера, рассчитывая, что ему удастся опровергнуть существование альфа-волн. Каково же было его изумление, когда он обнаружил эти волны в мозгах коллег по лаборатории! Эдриан использовал свой авторитет нобелевского лауреата и знаменитого электрофизиолога для популяризации работы, которая изначально не нравилась даже самому Бергеру, причём настойчиво подчёркивал вклад последнего, дав альфа-волнам альтернативное название «ритм Бергера».

Помимо привлечения внимания общественности к открытиям Бергера, Эдриан и его коллега Брайан Мэтьюз значительно усовершенствовали машину немецкого учёного, снабдив её усилителем сигнала, а также реализовав возможность записи сигнала одновременно из нескольких областей мозга. Кроме того, Мэтьюз собрал струйный осциллограф для улучшения визуализации регистрируемых сигналов. С помощью этого оборудования Эдриан и Мэтьюз подтвердили многие открытия Бергера и представили собственные данные. Например, они отметили, что альфа-ритм был особенно сильным, когда электроды располагались над затылочной долей мозга, которая, как считалось (и считается), задействована в обработке зрительных сигналов. Эдриан и Мэтьюз проанализировали зависимость данных электроэнцефалограммы в различных визуальных условиях (например, в полной темноте, при вспышках света и т. д.) и пришли к выводу, что альфа-ритм специфичен для нейронов, обрабатывающих зрительную информацию, — интерпретация, которая противоречила утверждению Бергера о том, что альфа-волны — это результат работы всего мозга в целом, связанный с умственной деятельностью. Признавая, что его собственный альфа-ритм практически неотличим от альфа-ритма водяного жука, Эдриан не решился связать его со сложным познавательным процессом[25].

Что же касается Като, то он так и не стал лауреатом Нобелевской премии, хотя и был неоднократно номинирован на неё, в том числе и Иваном Петровичем Павловым. Как и опыты Эдриана, эксперименты Като оказали большое влияние на дальнейшее развитие нейрофизиологии. Стремясь преодолеть трудности, связанные с интерпретацией экспериментов по блокированию проводимости нервных стволов, и доказать свою «теорию неубывания», Като и его коллеги разработали в начале 1930-х метод, который позволил производить анатомическое разделение живого нервного волокна. Эта процедура послужила важным подспорьем при изучении «микрофизиологии» нервов, в частности для исследования роли перехватов Ранвье в распространении нервных импульсов в миелинизированных волокнах.

Немного о термине «миелинизированные». Дело в том, что оболочки нервных волокон позвоночных значительно различаются по своему строению, и в зависимости от этого оболочки разделяют на миелиновые (мякотные) и безмиелиновые (безмякотные), последние сходны по строению с нервными волокнами беспозвоночных. Сами же волокна, в зависимости от типа оболочки, называют миелинизированными или немиелинизированными. Те и другие состоят из отростков (аксонов) нервных клеток, но в случае миелинизированных волокон аксоны окружены электроизолирующей оболочкой. Миелиновая оболочка состоит из глиальных клеток: в периферической нервной системе это шванновские клетки, а в центральной нервной системе — олигодендроциты. Данная оболочка формируется из плоского выроста тела глиальной клетки, который многократно оборачивает аксон подобно изоленте. Цитоплазма в этом выросте практически отсутствует, поэтому миелиновая оболочка по сути представляет собой множество слоёв клеточной мембраны.

Миелинизированные нервные волокна характерны для соматического отдела нервной системы, управляющего скелетной мускулатурой, а для вегетативного отдела, регулирующего деятельность внутренних органов, характерны немиелинизированные волокна.

В покрытии миелинизированных волокон по всей их длине регулярно (через каждые
1–2 мм) расположены микроскопические разрывы миелиновой оболочки, получившие название перехватов Ранвье — в честь своего первооткрывателя, французского гистолога и анатома Луи Антуана Ранвье. По сути, перехваты Ранвье — это промежутки между двумя смежными клетками, образующими миелиновую оболочку нервного волокна. Хотя перехваты Ранвье открыты ещё в XIX в., их функция долгое время оставалась неясной.

Но, благодаря экспериментам Като по блокированию проводимости, в 1950-х гг. Исидзи Тасаки, Тайджи Такеуси, Эндрю Хаксли и Роберт Штемпфли смогли провести исследования отдельных волокон и установить сальтаторный (скачкообразный, от лат. saltare — прыгать, скакать) характер проводимости в миелинизированных нервах.

О том, какие конкретные биологические и электрохимические механизмы лежат в основе сальтаторной проводимости и нервной проводимости вообще, мы поговорим в следующем разделе.

  1. Adrian E. D. (1932). Nobel Lecture, December 12, 1932 // https://www.nobelprize.org/prizes/medicine/1932/adrian/lecture/
  2. Finger S. (2004). Minds behind the Brain: A History of the Pioneers and Their Discoveries. Oxford University Press // https://books.google.ru/books?id=3OWU1wnOy84C
  3. Bowditch H. P (1871). Über die Eigenthümlichkeiten der Reizbarkeit, welche die Muskelfasern des Herzens zeigen / Arbeiten aus der Physiologischen Anstalt zu Leipzig // https://echo.mpiwg-berlin.mpg.de/ECHOdocuView?url=/permanent/vlp/lit1387/index.meta
  4. Rosenblueth A. (1935). The All-or-None Principle and the Nerve Effector Systems / The Quarterly Review of Biology, Vol. 10, No. 3, pp. 334-340 // https://doi.org/10.1086/394489
  5. Lucas K. (1905). On the gradation of activity in a skeletal muscle-fibre / The Journal of Physiology, Vol. 33, Iss. 2, pp. 125—137 // https://doi.org/10.1113/jphysiol.1905.sp001115
  6. Lucas K. (1909). The "all-or-none" contraction of the amphibian skeletal muscle fibre / The Journal of Physiology, Vol. 38, Iss. 2—3, pp. 113-133 // https://doi.org/10.1113/jphysiol.1909.sp001298
  7. Smith D. L. (1963). Basic Concepts in Physiology: II. Keith Lucas and the Nerve-Muscle Response / The American Biology Teacher, Vol. 25, Iss. 8, pp. 610—615 // https://doi.org/10.2307/4440465
  8. Finger S. (2004). Minds behind the Brain: A History of the Pioneers and Their Discoveries. Oxford University Press // https://books.google.ru/books?id=3OWU1wnOy84C
  9. Piccolino M. (2003). Nerves, alcohol and drugs, the Adrian–Kato controversy on nervous conduction: deep insights from a “wrong” experiment? / Brain Research Reviews, Vol. 43, Iss. 3, pp. 257—265 // https://doi.prg/10.1016/j.brainresrev.2003.08.006
  10. Adrian E. D. (1932). Nobel Lecture, December 12, 1932 // https://www.nobelprize.org/prizes/medicine/1932/adrian/lecture/
  11. Finger S. (2004). Minds behind the Brain: A History of the Pioneers and Their Discoveries. Oxford University Press // https://books.google.ru/books?id=3OWU1wnOy84C
  12. Piccolino M., Bresadola M. (2013). Shocking Frogs: Galvani, Volta, and the Electric Origins of Neuroscience. Oxford University Press // https://books.google.ru/books?id=_VYGAQAAQBAJ
  13. Lucas K., Adrian E. D. (1917). The Conduction of the Nervous Impulse. Longmans, Green and Company // https://books.google.ru/books?id=fNVOAAAAMAAJ
  14. Cowan W. M., Südhof T. C., Stevens C. P. (2003). Synapses. JHU Press // https://books.google.ru/books?id=FO5efrKGVQoC
  15. Finger S. (2004). Minds behind the Brain: A History of the Pioneers and Their Discoveries. Oxford University Press // https://books.google.ru/books?id=3OWU1wnOy84C
  16. Gasser H. S., Newcomer H. S. (1921). Physiological action currents in the phrenic nerve. An application of the thermionic vacuum tube to nerve physiology / The American Journal of Physiology, Vol. 57, Iss. 1, pp. 1—26 // https://doi.org/10.1152/ajplegacy.1921.57.1.1
  17. Павлов А. 5 июля 1888 г / Critical: Сайт медицины критических состояний. Календарь // https://www.critical.ru/calendar/0507gasser.htm
  18. Gasser H. S., Erlanger J. (1929). Role of size in establishment of nerve block by pressure or cocaine / The American Journal of Physiology, Vol. 88, pp. 581—589.
  19. Piccolino M. (2003). Nerves, alcohol and drugs, the Adrian–Kato controversy on nervous conduction: deep insights from a “wrong” experiment? / Brain Research Reviews, Vol. 43, Iss. 3, pp. 257—265 // https://doi.prg/10.1016/j.brainresrev.2003.08.006
  20. Kato G.-I. (1970). The road a scientist followed. Notes of Japanese Physiology as I myself experienced it / Annual Review of Physiology, 1970, Vol. 32, pp. 1—22 // https://doi.org/10.1146/annurev.ph.32.030170.000245
  21. Adrian E. D. (1932). Nobel Lecture, December 12, 1932 // https://www.nobelprize.org/prizes/medicine/1932/adrian/lecture/
  22. The Nobel Prize in Physiology or Medicine 1944. NobelPrize.org. Nobel Media AB 2020, 30 Oct 2020 // https://www.nobelprize.org/prizes/medicine/1944/summary/
  23. * Частотно-импульсная модуляция — такой вид импульсной модуляции, при которой управление средним значением выходного параметра осуществляется за счёт изменения частоты следования импульсов, обладающих неизменной длительностью.
  24. Piccolino M. (2003). Nerves, alcohol and drugs, the Adrian–Kato controversy on nervous conduction: deep insights from a “wrong” experiment? / Brain Research Reviews, Vol. 43, Iss. 3, pp. 257—265 // https://doi.prg/10.1016/j.brainresrev.2003.08.006
  25. Finger S. (2004). Minds behind the Brain: A History of the Pioneers and Their Discoveries. Oxford University Press // https://books.google.ru/books?id=3OWU1wnOy84C
Loading comments...